成都最硬核的公司,陆奇投了

2024-07-24 16:26:36 - 投中网

好像所有的商界大佬和顶级机构都在关注这一赛道。

成都最硬核的公司,陆奇投了

成都最硬核的公司,陆奇投了

项江,1996年进入中国科技大学等离子体专业学习,先后获得本科、硕士和博士学位,研究课题一直是磁约束聚变装置托卡马克。2006年博士毕业后,进入某核物理研究院从事激光惯性约束核聚变研究。在2018年离职前,他已经与核聚变打了20余年的交道。项江说,最让他感到震撼的,是核聚变的商业化从少有人问津到产业加速,仅仅是最近两年发生的事。在2018年他刚刚辞职时,还想不到核聚变这项浩大的科学工程,竟然能够被这么多创业者和投资人相中。太快了。这可能不仅是他的感受,也是所有人的看法。“永远是下一个50年”的技术好像正离我们越来越近。时间倒回到2018年,项江告别科研。当时,科大讯飞、国盾量子、寒武纪等中科大系的创业公司,在不断刷新融资记录登陆资本市场,“以前搞科研的投身创业非常少,但现在这群人实现自身价值的方式更加多元化了。”项江离职前夕也在考虑如何创业。2018年他离开体制后,先是加入到国盾量子,后又回到中科大做科技成果转化服务。直到2022年初,两则消息的出现才让他找准了方向。2022年2月,国内第一家核聚变公司能量奇点曝出天使轮融资近4亿的消息;一个月后,另一家公司星环聚能开始路演。这两条消息让他备受震撼,“核聚变是一项极端复杂的大科学工程,商业公司能够在这上面创业完全出乎了我的意料。”于是在2022年12月31日,项江在成都创立了瀚海聚能。这是全国第四家商业核聚变公司。托卡马克,并非唯一答案如果要问瀚海聚能与其他公司有何不同,那就是项江没有选择主流的技术路线托卡马克——也就是我们俗称的“甜甜圈”磁场构型,而是选择建设一座直线型的核聚变装置。1958年,苏联科学家阿奇莫维奇设计建造了第一台托卡马克T-1装置。在经过两次升级改造之后,阿奇莫维奇向外宣布,T-3产生了1000万度等离子体。这远远超过其他各种装置上的参数,此后托卡马克就逐渐成为世界各国研究核聚变的主流选择。与此同时,我国也选择了托卡马克作为主要研究路线。1993年,中国科学院等离子体物理研究所建成了第一台HT-7超导托卡马克装置。2006年,世界上第一台全超导托卡马克装置东方超环(EAST)首次成功放电。到去年,EAST在122254次实验中获得403秒稳态高约束等离子体,创下了运行时间的新纪录。毫无疑问,这一技术路线是目前研发历史最悠久、最成熟、国际合作最深的方案。这也是国内外企业选择托卡马克的主要原因。但项江告诉我,托卡马克对于商用核聚变公司而言,未必是最优的选择。他解释道,托卡马克是资金门槛最高的技术路线,实验装置的建设动辄需要数百亿人民币,商业堆的建设保守估计将达到上千亿。2006年开始建造的国际热核聚变装置ITER项目,集合了中国、欧盟、印度、日本、韩国、俄罗斯、美国等主要科技强国,建造成本原计划为50亿美元并用十年建成,但现在投资总额已超过200亿欧元(超过1500亿人民币),目前为止依然看不到投入的上限。“按ITER的建造规模,它设计的是500兆瓦的能量输出,并网发电的话大概是200兆瓦,但是它的建造成本现在是在1000亿人民币以上,而且还只是一个试验装置。按照试验装置的规模推算下来,做成一个500兆瓦到1000兆瓦的商业堆,成本就需要2000亿到3000亿人民币。”而且他指出,即使是小型化的托卡马克投入也不菲。2018年成立的CommonwealthFusionSystems(CFS),技术路线就是高温超导小型托卡马克。目前的融资体量已经超过20亿美元(140亿人民币)。未来这家公司要实现商业发电,还需要继续增加投入。“如此高昂的建设成本,就难以实现商业上的闭环。”项江算过一笔账:核聚变的原材料中氘来源于海水中,长远来看成本几乎可以忽略不计。电站的建造成本,要看整个装置的运行周期和成本摊销。一般一个发电站的运行周期是30到50年,结合它的发电功率就可以算出总共能发多少电、每年的成本摊销,从而算出它的度电成本。“托卡马克装置肯定可以实现发电目标,但度电成本将高达上万元/度,这对商业化有什么意义呢?”所以在项江看来,“大家显然都低估了托卡马克商业化的难度和成本。”那有没有更经济的技术路线?我问。“有,场反位形直线型装置。”项江向我说道。线性装置:商业化更优的解决方案?在介绍场反位形直线型装置之前,先厘清一个问题:为什么直线型装置在此前没有成为主流?首先,核聚变的原理已经不是秘密:两个轻原子核(比如氘氚)结合在一起,会释放巨大能量。但要让两个原子核相互碰撞、结合,就必须让1亿摄氏度以上的高温等离子体保持运行,这样才能克服原子核之间形成的库伦排斥力。反应堆需要将等离子体密封压缩在一个有限的空间中,防止逃逸,并达到极高的密度,才可能让原子核频繁碰撞、持续释放能量。而“甜甜圈”装置托卡马克就是起到这样的作用:设置一个真空环形通道,在螺线管形磁场的约束下,将1亿摄氏度的等离子体维持住。如果高温能维持,等离子体能够保持高密度,核聚变就能可控地持续发生。如果原子核相互碰撞释放的能量,大于维持高温以及磁场所需要的能量,就能实现发电净值输出。那么直线型装置的问题就显而易见了:它“管不住”等离子体。“直线型路线的原理是在直线形装置上,通过形成场反位形或磁镜的方式来约束等离子体。不过这种方法以前存在等离子体逃逸、损失的问题。所以在20世纪并不占优。”项江解释说。但近年来随着新材料、新技术的发展使之成为可能。“比如高温超导磁体的使用,磁场强度大幅增加,大大提高了约束性能。以及半导体新材料和电子元器件的新发展,在功率电源等方面带来了很大提升。”2000年前后,直线型装置逐渐被一些研究团队和商业公司验证。1998年,美国TriAlphaEnergy(TAE)成立,这家位于美国加州的核聚变公司所采用的路线就是线性装置。而它的“接棒者”,2013年成立的HelionEnergy,也是利用线性装置来实现商业发电。而且它提出了十分激进的商业化目标:2028年为微软供电50兆瓦,度电成本将逐渐降低至1千瓦时一美分。这是什么概念?“美国很多地区的居民用电是10美分,在加州可能会是20美分,也就是说,一度电一美分,这可比现在所有电力的度电成本都要低。”瀚海聚能的技术路线就是对标Helion,以场反位形直线型装置来实现核聚变最终的商业化。按照项江的计划,在线性装置的基础上建造一个百兆瓦量级的发电站,成本仅为30-50亿元,短期内度电成本可以降到和火电的同一水平。相比于托卡马克实验装置建设就需要上百亿乃至数百亿的投入,这已经大大降低了成本。那么如此低廉的造价又是如何实现的?一方面,直线型装置不用建造许多托卡马克必须包含的大型昂贵周边设备,比如大功率加热系统以及大型冷却系统等。另一方面,托卡马克装置多部位环环相套,一旦损坏,维修将会是一场大工程。而直线型装置采用模块化设计,一旦部件损坏,替换一个新的部件即可。“中间的很多模块可以复用,比如说电源诊断、控制系统等可以复用到下一代装置上,下一代装置只需要把中间的反应室换掉。”这两方面决定了直线型装置开发迭代速度更快。TAE从公司创立到现在的26年时间里,仅用了12亿美元的投资,就迭代5代装置,目前正在建设第6代装置。而Helion在2013年-2020年间,融资总额不到1亿美元,就将线性装置迭代到了第7代,“这是托卡马克装置难以想象的。”更快的迭代速度,能够将工程化问题迅速检验,从而又更快地推进了商业化发电。这就不难理解,为什么Helion能够提出2028年实现供电的激进计划。此外,直线型装置功率密度是托卡马克类的100-1000倍;而且它的应用场景更为灵活:“可以放在一个20米的空间内,”比一个篮球场的占地面积还要小。再加上核聚变安全无污染的特点,可以放置在社区、医院等场景中。“如果对大型项目如规模化工厂供电,只需要将多个发电单元进行并联组合即可。”

今日热搜