为一大类离散推理问题找到精确解,即使这些问题具有无限支撑和连续...
这是一项重大的推广,需要采用不同的证明技术,因为[26,17,4]中的证明所依赖的幂级数表示P{i∈N}P[X=i]x^i对于连续分布而言是无效的。4实现与优化实现生成函数(GF)语义的主要难点在于计算偏导数。一种自然的方法(如[4,18]所遵循的)是操作生成函数的符号表示,并使用计算机代数来计算导数。然而,...
海森堡的魔法与矩阵力学的创立|薛定谔|量子化|哈密顿_网易订阅
在经典关系中,x取实值,因此有xn(-l)=xn*(l);相对应的,量子关系中有xnm=xmn*。(2)第二步重建x2和x的关系x2和辐射功率直接相关,能否自洽地推导出x2,是这个方案能否成功的关键。在Ritz组合法则的启发下,海森堡把第一个x的末态和第二个x的初态等同起来作为共同的中间态,这样合起来的指数因子只依赖第...
发散级数怎样求和?
于是他轻率地在等式两边代入x=1,得到等式1/2=1-1+1-1+1-…。然而,这离真理还差了一步。今日,每一个学过初等级数理论的理工科大学生都知道上述幂级数的收敛半径为1,且收敛区域仅仅是开区间(-1,1)。所以欧拉用了错误的幂级数赋值法所得到的是发散级数的广义和。其实,如果他将-1分别乘以如上幂级数展式...
一个令人惊叹的数学恒等式,一个天才的发现,一个意想不到的结果
首先,让我们把这个和转换成一个关于变量x的幂级数,计算这个幂级数的导数:现在,首项是1。把这两个幂级数对齐:上面是一个关于x的函数,我们称之为y(x),下面是它的导数y'(x),不难发现:这就是一个微分方程。要解它,我们需要找到一个函数,这个函数加1后,得到的是该函数的导数。有没有任何简单的函数...
驯服粒子物理学中的“无穷”,用数学方法解决最复杂的物理难题
自庞加莱时代以来,数学家和物理学家已经意识到还有其他类型的项,这些项是“超越所有阶”的,它们比最小的幂项还要小。这些“指数级小”的项可以采用e^(??1/x)的形式,例如,它们提供了丢失的信息。如果将它们包含在级数中,并采用合适的“重新求和”方法使级数变为有限,你就可以减轻部分(甚至可能是全部)的模...
《张朝阳的物理课》探究谐振子模型的量子化问题
紧接着,张朝阳分析了如此递推公式下的幂级数,如果不截断成多项式,会导致波函数不满足边界条件,也就是波函数无法归一化(www.e993.com)2024年11月23日。如果要求这个幂级数截断成多项式,则有2k+1-λ=0,从而λ=2k+1。按照一般习惯将k写为n,再结合前方变量代换中λ和E的关系,可得:
希尔伯特第八问题有望终结:黎曼猜想获证!
故导数f(非1/??2)时扩域出的“两类发散级数之和”构成交错级数,正负两部分的绝对值仅存同态关系,以上可由哥猜推论得到。可见是用哥猜获证做引理,证明了黎曼泽塔函数通项导数的生成元非1/??2时必无0点非平凡解,黎曼猜想获证。本文包括续篇是对希尔伯特第八问题的全面阐释,将囊括哥德巴赫猜想、孪生素数...
大学高等数学:第二章第六讲高阶导数及n阶导数的求法
=-2^(n-1)cos(2x+nπ/2)+1/2*4^(n-1)cos(4x+nπ/2)(三)用莱布尼兹法则求乘积的n阶导数(四)由f(x)在x=xo处的泰勒公式的系数或幂级数展开式的系数求f^(n)(xo)(在后面的泰勒公式部分讲解)高阶导数及n阶导数的求法这四种方法,可以这么说,囊括了高阶导数求导法的所有题型,请伙伴们能够认...
PRL论文导读:2018年121卷23期
使用共形Kundt度规的拟设,四阶场方程可简化为紧凑的自治形式。它的解是幂级数,使我们能够直接设置Bach参数和/或宇宙学常数等于零。为了解释这些时空,他们分析了度规函数。特别是,他们证明了对于一定范围内的正宇宙常数,存在黑洞和宇宙视界,它们中间存在一个静态区域。他们还确认了自由测试粒子的潮汐力效应和热力学量。
高一数学诱导公式
Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscα...