指数函数y=20·5^x+22·2^x+13·4^x的图像变化分析
此时指数函数y2=22*2^x为单调增函数,函数的主要性质与函数y=2^x的性质基本类似,函数经过点(0,22),图像为凹函数,其示意图如下所示:※.函数y3=20*5^x+22*2^x的图像示意图通过导数判断函数的单调性,有:y=20*5^x+22*2^x,dy/dx=20*5^x*ln5+22*2^x*ln2>0,所以函数在定义域上为...
复合指数函数y=24·6?? +13·2?? +24·3?? 的变化分析
dy/dx=24*6??*ln6+13*2??*ln2+24*3??*ln3>0,所以函数在定义域上为单调增函数,再次求导,有:d??y/dx??=24*6??*ln??6+13*2??*ln??2+24*3??*ln??3>0,故函数也为凹函数,此时示意图如下。※.图像在同一个坐标系的示意图将以上四个指数函数,即y1=24*6??,y2=1...
不定积分的求法-不定积分常用方法小结
??I=12∫arctanxd[(x2+1)ln(x2+1)??x2]=12[(x2+1)ln(x2+1)??x2]arctanx??12∫[ln(x2+1)??x2x2+1]dx=12[(x2+1)ln(x2+1)??x2??3]arctanx??x2ln(x2+1)+32x+c\begin{align}\RightarrowI&=\frac{1}{2}\int_{}^{}arctanxd[(x^{2}+1)ln(x^{2}+1...
算法中的微积分:5大函数求导公式让你在面试中脱颖而出
在对复变指数函数f(x)=x求导前,要先用一个简单的指数函数f(x)=2来证明复变函数的一种性质。先用上述方程将2转化为exp(xln(2)),再用链式法则求导。现在回到原来的函数f(x)=x,只要把它转化为f(x)=exp(xlnx),求导就变得相对简单,可能唯一困难的部分是链式法则求导这一步。注意这里是用乘...
高一数学函数图像知识点,太实用了!
例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看:通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个...