【青鸟飞扬教育】单调有界定理
证明:数列$a_n$收敛,且其极限为$\sqrt\sigma$.证明:由数学归纳法可知,$a_n>=\sqrt\sigma$,又$\frac{a_{n+1}}{a_n}=\frac{\frac12(a_n+\frac{\sigma}a_n)}{a_n}=\frac12(1+\frac{\sigma}{a_n^2})<\frac12(1+1)=1$,即$a_n$单调递减有下界,由单调有界定理,数列$a_n$收敛....
数学爱好者必看:5个有趣的数学事实大揭秘!
实数系的一个基本属性是它的完备性,即每一个有界的数列都有极限。而循环小数0.9999...可以被看作是一个极限过程:定义序列:考虑序列s??=0.9+0.09+0.009+...+0.000...9序列的极限:我们可以计算这个序列的极限。由于这是一个等比数列的部分和,极限是:其中,a是首项0.9,r是公比...
期末来了:《函数与极限》应知应会题型、求解思路与典型练习 (二)
可以判定级数收敛,即收敛,等价于数列收敛.然后对递推式两端取极限得到极限值.(4)拉链定理.如果以上方法失败,而数列又不具有单调性,可以尝试改写为奇数项构成的数列与偶数项构成的数列,并基于原数列的递推式得到各自的递推关系式,然后分别基于以上某个方法,尤其是单调有界原理来验证两个数列极限的存在性与求...
你知道吗! 所有单调数列都是收敛的|上界|定理|数列|无穷大_手机...
(n→∞)an=lim)n→∞)an.若{an}无界,则lim?(n→∞)an=+∞,显然,这里的收敛包括收敛于无穷大的类型,虽然数列(或函数)没有上界,但这也是分成两种情况的,一种是没有上界,且不收敛于无穷大的,这种情况下通常是在无穷大的地方振荡的;另一种是没有上界,但却收敛于无穷大的从而对任意正数M,{an}...
数列极限专题:夹逼定理与单调有界原理求数列极限实例分析
所以数列单调递增有上界,即数列收敛.例4(单调有界原理)设且有,,如果证明数列,收敛,并且收敛于同一极限值.分析由于,由数列,的递推公式和几何-算术平均值不等式,有从而由数学归纳法可得于是可知数列单调递减有下界,单调递增有上界,所以两个数列都存在极限....
数列极限重点中的重点:柯西收敛原理
1、从任意数列中可以选出一个单调子列(www.e993.com)2024年11月16日。2、任何有界数列必可选出一个收敛子列。如果证明从中选出的单调子列的极限和数列通项极限相等那么就可以证明该数列有极限,首先令这个选出来的子列的极限是a,然后再去证明也是数列通项的极限即可,与必要性证明类似,教材中有详细步骤,这里只提供思想参考。
考研数学:如何利用函数单调性证明数列单调性
当要证明数列收敛时,一般是结合单调有界准则,当然这只是方法之一,除此之外还有其它一些证明数列收敛的方法,如:夹逼准则、数学归纳法、递推法、收敛的定义,这些方法同学们要灵活运用。关键词:考研数学数列单调性函数单调性
2016考研数学:求数列极限的方法总结
1。求数列极限求数列极限可以归纳为以下三种形式。★抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。★求具体数列的极限,可以参考以下几种方法:a。利用单调有界必收敛准则求数列极限。
递推数列存在极限的证明与极限值求解思路与典型题分析(三...
对于数列:{x_2}={1\over2}"data-formula-type="block-equation">借助于递推关系式,可得所以由数学归纳法可得数列单调递增,又由于有界,所以极限存在。从而有由于和分别为数列的奇数项构成的数列和偶数项构成的数列,它们的极限存在并且相等,所以由数列极限的拉链定理,可得原数列极限存在,并且就...
武汉纺织大学2024 年硕士研究生入学考试自命题大纲
一,函数,极限,连续考试内容函数的概念及表示法函数的有界性,单调性,周期性和奇偶性复合函数,反函数,分段函数和隐函数基本初等函数的性质及其图形数列极限与函数极限的概念无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的单调有界准则和夹逼准则两个重要极限函数连续的概念函数...