【青鸟飞扬教育】单调有界定理
定义:单调有界数列必有极限.在证明数列收敛时,我们只需证明两个条件:数列单调+数列有界.具体来说就是证:单调递增(减)数列有上(下)界.在利用该定理进行证明之前,我们先证明该定理:证明:对于数列${x_n}$,由于$x_n$有界,由确界原理可知,${x_n}$有上确界不妨设${x_n}$是单调递增的,设$sup{x...
席南华:基础数学的一些过去和现状
利用这些函数,他证明了一个有趣的结论——很多算术数列含有无限多个素数。具体说来就是:如果两个正整数a和m互素,那么算术数列a+m,a+2m,a+3m,…,a+km,…里有无穷多个素数。后来阿廷对数域的有限扩张域的伽罗瓦群的表示,类似地也定义了一类L级数并解析延拓得到一个L函数,现称为阿廷L函数。利用...
数学爱好者必看:5个有趣的数学事实大揭秘!
实数系的一个基本属性是它的完备性,即每一个有界的数列都有极限。而循环小数0.9999...可以被看作是一个极限过程:定义序列:考虑序列s??=0.9+0.09+0.009+...+0.000...9序列的极限:我们可以计算这个序列的极限。由于这是一个等比数列的部分和,极限是:其中,a是首项0.9,r是公比...
期末来了:《函数与极限》应知应会题型、求解思路与典型练习 (二)
可以判定级数收敛,即收敛,等价于数列收敛.然后对递推式两端取极限得到极限值.(4)拉链定理.如果以上方法失败,而数列又不具有单调性,可以尝试改写为奇数项构成的数列与偶数项构成的数列,并基于原数列的递推式得到各自的递推关系式,然后分别基于以上某个方法,尤其是单调有界原理来验证两个数列极限的存在性与求...
你知道吗! 所有单调数列都是收敛的|上界|定理|数列|无穷大_手机...
证:若{an}有界,则由单调有界定理知,lim(n→∞)an存在,且lim?(n→∞)an=lim)n→∞)an.若{an}无界,则lim?(n→∞)an=+∞,显然,这里的收敛包括收敛于无穷大的类型,虽然数列(或函数)没有上界,但这也是分成两种情况的,一种是没有上界,且不收敛于无穷大的,这种情况下通常是在无穷大的地方振荡的...
数列极限专题:夹逼定理与单调有界原理求数列极限实例分析
所以数列单调递增有上界,即数列收敛.例4(单调有界原理)设且有,,如果证明数列,收敛,并且收敛于同一极限值.分析由于,由数列,的递推公式和几何-算术平均值不等式,有从而由数学归纳法可得于是可知数列单调递减有下界,单调递增有上界,所以两个数列都存在极限....
数列极限重点中的重点:柯西收敛原理
1、从任意数列中可以选出一个单调子列。2、任何有界数列必可选出一个收敛子列。如果证明从中选出的单调子列的极限和数列通项极限相等那么就可以证明该数列有极限,首先令这个选出来的子列的极限是a,然后再去证明也是数列通项的极限即可,与必要性证明类似,教材中有详细步骤,这里只提供思想参考。
考研数学:如何利用函数单调性证明数列单调性
当要证明数列收敛时,一般是结合单调有界准则,当然这只是方法之一,除此之外还有其它一些证明数列收敛的方法,如:夹逼准则、数学归纳法、递推法、收敛的定义,这些方法同学们要灵活运用。关键词:考研数学数列单调性函数单调性
2016考研数学:求数列极限的方法总结
a。利用单调有界必收敛准则求数列极限。首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。b。利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再...
欧拉常数——最神秘的数字,调和级数的产物,至今看不清它的面貌
T_n是有界的。T_n是单调递减的。并使用单调收敛定理,我们得到T_n确实收敛于一个固定的极限。也就是说,γ(gamma)存在。给出γ一个更严格的下限??在上述基础上,我们可以自信地说:但我们能不能再接近一些呢?如果我们用梯形来代替矩形呢?