数学爱好者必看:5个有趣的数学事实大揭秘!
实数系的一个基本属性是它的完备性,即每一个有界的数列都有极限。而循环小数0.9999...可以被看作是一个极限过程:定义序列:考虑序列s??=0.9+0.09+0.009+...+0.000...9序列的极限:我们可以计算这个序列的极限。由于这是一个等比数列的部分和,极限是:其中,a是首项0.9,r是公比...
期末来了:《函数与极限》应知应会题型、求解思路与典型练习 (二)
可以判定级数收敛,即收敛,等价于数列收敛.然后对递推式两端取极限得到极限值.(4)拉链定理.如果以上方法失败,而数列又不具有单调性,可以尝试改写为奇数项构成的数列与偶数项构成的数列,并基于原数列的递推式得到各自的递推关系式,然后分别基于以上某个方法,尤其是单调有界原理来验证两个数列极限的存在性与求...
发散级数怎样求和?|黎曼|定理|数列|傅里叶|幂级数_网易订阅
它是1和-1交替出现的无穷数列,当然不收敛。然而如果我们取这个数列的前n项的算术平均值,得到的称为原数列an的切萨罗算术平均数列,它的各项写出来就是,所以当n趋向于无穷大时An趋向于0。这样,对于这个发散的数列,通过平均化处理,我们获得了一个收敛的数列。一般地,对于一个数列an,如果它对应的切萨罗算术平均数...
数列极限重点中的重点:柯西收敛原理
必要性是十分显然的,如果数列收敛的情况下,根据数列极限定义,必然会收敛到一个值,而这两项充分靠后的情况下也是充分接近的,我们可以在两项中间任意取值都可以缩小到事先给定的任意程度,也就是小于ε。充分性的已知是基本列,需要证明这个基本列是收敛的,而数列收敛的证明之前有讲过,只需证明两点,具有单调性和有...
数列极限专题:夹逼定理与单调有界原理求数列极限实例分析
所以数列单调递增有上界,即数列收敛.例4(单调有界原理)设且有,,如果证明数列,收敛,并且收敛于同一极限值.分析由于,由数列,的递推公式和几何-算术平均值不等式,有从而由数学归纳法可得于是可知数列单调递减有下界,单调递增有上界,所以两个数列都存在极限....
数列极限的定义简单分析(供初学者参考)
当我们用极限定义来证明极限存在的时候,只需要证明出N的存在性就可以(www.e993.com)2024年11月16日。也就是说只要有这么个N能使后面的无穷多项都落在ε邻域之内即可。不用找到最小的N,一般来讲怎么方便怎么来。收敛数列的性质1、数列的极限唯一2、收敛数列一定有界3、收敛数列的每一个子列都收敛同一个极限...
2024考研数学复习高数定理:函数与极限
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
《数学概观》:讲解大学数学基本思想的一本好书
有了实数的严格定义和最小上界(即上确界)公理,就能够顺理成章地给出数列极限的定义和函数极限的定义,并且推导出了几条常用的极限定理,如数列的单调有界定理、子列定理和柯西极限定理等,这样就为讨论函数的连续性做好了准备。作者还重点介绍了函数列的一致收敛概念,并且严格证明了一致收敛的连续函数列的极限函数...
2023考研数学大纲已公布,考试大纲中高等数学重难点内容分析
四、单调有界收敛准则单调有界收敛准则的定理内容相对比较简单:单调有界的数列必然收敛(单增找上界,单减找下界)。关于它的考察16年左右考过好几次,考到了都是压轴题的,所以冲击名校的学生需要拿下它的。它的难点主要集中在题型的多变性以及综合性上,首先需要自己快速识别出题的考察点,其次找准备题目信息使用该定理...
专升本考试公共基础课,四门科目考试要求来了!
2.了解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。理解极限存在的两个收敛准则(夹逼准则与单调有界准则),熟练掌握利用两个重要极限求函数的极限。3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会用等价无穷小量...