数学说:一个人绝不可能通过传销发财,这个数列是收敛的!
一个等比数列,Q小于1,必然收敛于某一个数——你所获得的收益必然收敛于某个数,你的收入不是呈指数级增长的。你发展不了那么多人,每个人认识的人都是有限的。在这些有限的人中,也没有多少人愿意加入。发展一个下线就都很难,别说是陌生人了,身边的人都不信你。做点其他事情吧,现在这年头正经赚钱的方式...
最高阶的无穷大,竟然是它——你能画出的曲线数
无穷虽然不能有确定的值,但是它可以收敛或者发散。比如,数列1、2、3、4、5…就是发散的,因为最后的值很大很大。而??、??、…就是收敛的,它无限逼近于0。(怎么定义无限逼近,后来柯西给出了严谨的定义。)注意,无限逼近。细品,是不是一种趋势,而且这种趋势还有大有小。也就是说:有些数列收敛的快...
美丽而“无用”的莫比乌斯反演,解决了一类物理问题
至此所讨论的级数都是“有穷级数”,即有穷个数的和式。下面考虑几个无穷级数,对它们进行“级数通项分组重排”的莫比乌斯反演手术时,需要保证运算正确,一个使得手术成功的充分条件是相关级数“绝对收敛”,一旦无穷级数出笼,这个假设将不加交代地给出。理由很简单:仅仅条件收敛的级数可以重新排列通项数列使得新级数改变...
发散级数怎样求和?|黎曼|定理|数列|等式|幂级数_网易订阅
就像单位复数e^ix的正幂次数列e^inx几乎都不收敛一样(读者可令x=π/4试一试看看发生了什么,再检查对应的切萨罗算术平均数列有没有极限),矩阵S的正幂次序列S^n一般也不能指望收敛,除非S还满足其他性质,比如它的元素全是正数。然而,只要幂次序列S^n是一致有界的,它的切不可思议的等式回望无穷级数的求和史...
期末来了:《函数与极限》应知应会题型、求解思路与典型练习 (二)
可以判定级数收敛,即收敛,等价于数列收敛.然后对递推式两端取极限得到极限值.(4)拉链定理.如果以上方法失败,而数列又不具有单调性,可以尝试改写为奇数项构成的数列与偶数项构成的数列,并基于原数列的递推式得到各自的递推关系式,然后分别基于以上某个方法,尤其是单调有界原理来验证两个数列极限的存在性与求...
数列极限重点中的重点:柯西收敛原理
柯西收敛原理就是:判断一个数列收敛的充分必要条件是,这个数列是基本列(www.e993.com)2024年11月19日。必要性是十分显然的,如果数列收敛的情况下,根据数列极限定义,必然会收敛到一个值,而这两项充分靠后的情况下也是充分接近的,我们可以在两项中间任意取值都可以缩小到事先给定的任意程度,也就是小于ε。
数列极限的定义、应用注意事项、典型思路与实例分析
1、数列极限定义的等价描述形式定义1:数列收敛于对于任一给定的,存在正整数,当时,恒有成立.定义2:数列收敛于对于任一给定的,存在正整数,,成立.定义3:数列收敛于,,,成立.定义4:数列收敛于对于任一给定的,,,成立,其中是一个与和都无关的正的常数....
希尔伯特第八问题有望终结:黎曼猜想获证!
下面我们就来证明黎曼猜想的一个等价命题:黎曼泽塔函数临界线外的非平凡0点解为空集。即黎曼黎曼泽塔函数除了数列通项中的导数的极限为常量时其原函数的极限可收敛于另一常量外,不存在通项导数为变量时仍满足解析延拓后的正负“发散和”可收敛于某常数,也不存在通项导数为常数时黎曼泽塔函数可收敛于某变数。这一差...
数列极限的定义简单分析(供初学者参考)
当我们用极限定义来证明极限存在的时候,只需要证明出N的存在性就可以。也就是说只要有这么个N能使后面的无穷多项都落在ε邻域之内即可。不用找到最小的N,一般来讲怎么方便怎么来。收敛数列的性质1、数列的极限唯一2、收敛数列一定有界3、收敛数列的每一个子列都收敛同一个极限...
高考数学:这些最6的定理!让你得分快准狠
1.设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a.若存在N,使得当n>N时,都有Xn≤Yn≤Zn,则数列{Yn}收敛,且极限为a.2.夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定...