数学思维到底是什么?如何训练?顶尖数学大学教授的这篇文章终于说...
这一过程从自然数(1、2、3……)开始,然后是自然数之间的分数,接着我们延伸到原点两侧的正负自然数(整数)和正负分数(有理数),最后扩展到包含有理数和无理数的全体实数。我们还会关注如何自然地进行整数、分数、小数的加减乘除运算,特别是那些将成为不同数系的形式化公理基础的性质。第二部分将介绍适合数学家所...
为什么不能用 0 做除数?|整数|实数|同余|自然数|有理数_网易订阅
1.自然数,整数,有理数的构造1.1.自然数集.由无限性公理,我们可以自然导出以下无穷集合:,我们可以给这个集合中的元素命个名:就这样,我们就有了自然数集.我们用表示.1.2.整数集,可以按照以下等价关系构成商集当且仅当.其中加法为一般意义上的加法.容易验证这是一个等价关系.它在...
数学悖论系列之六(选择公理的悖论)
可数和不可数无穷大之间的这种差异使得自然数比实数更小——数学家通过说两者具有不同的“基数”来传达这种区别。1891年乔治·康托尔证明了实数确实比自然数多。他还证明了直线上的无穷多个点与填充一个形状(如球体)的体积的无穷多个点具有相同的基数。巴拿赫和塔尔斯基意识到,我们可以把一个球体分成两个,方法是...
有理数和无理数到底哪个多?
我们知道实数是由有理数和无理数组成的,而有理数是可数的(因为它能有序排列,其基数等于自然数),所以无理数必然不可数。数轴上排得密密麻麻(稠密的)的有理数,在无理数面前实在太稀疏了。这一幕仿佛《庄子》庖丁解牛故事里的“以无厚入有间”(来自《庄子??养生主》,原意为:用很薄的(刀刃)插入有空隙...
无理数和有理数的区别
3、两者范围不同。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。2判断无理数的方法无理数也称为无限不循环小数,常见的无理数主要包括以下几种形式:...
这种无理数中的无理数,让数学家直呼“根本停不下来”
然而,实数和无理数的集合更大,是不可数的无穷大;与此同时,虽然代数数集包含所有有理数和无穷多个无理数,但它仍然是无穷大较小、可数的无限集合(www.e993.com)2024年11月17日。因此,它的补集,也就是超越数,是不可数无限的。换句话说,绝大多数实数和复数都是超越数。——虽说超越数这么多,但到了20世纪之交,数学家也只能确定其中非常...
科学之谜:奇妙的数王国
我们一辈子都少不了要跟数打交道。我们对数的认识也随着知识的增长不断扩大,从自然数到整数、有理数,再到实数、复数。虽然数有无穷无尽个,但并不是所有的数的重要性和知名度都是等量齐观的。比如,相较其他一些数而言,圆周率π就比较特殊,对于我们也更重要些。
人文数学的文化意蕴及价值意义
实际上,一部数学发展史,就是一道缤纷多彩的“分”的艺术景观,从最早的数形合一到代数与几何分开,再到后来的自然数、整数、有理数、无理数、实数、复数,从欧氏几何到非欧几何,从初等几何到解析几何、微分几何,从实变函数到复变函数,从三维空间到n维、高维空间……无一不是分的艺术。
世界上最美的数学公式:欧拉等式
所谓有理数,就是可以写成两个整数的比的数。写作集合就是这样一来,有理数的加、减、乘、除(分母不能为零)就都封闭了。毕达哥拉斯等人沉醉于自己的成就,他们认为所有的数字都是有理数。但是很快,学派内部的学者希帕索斯就发现了问题:如果一个直角三角形的两个直角边都是1,那么斜边无法用两个整数的比来表示...
数字发展简史及虚数的诞生,代数、数论和物理学的基础
我们称这些数字为无理数,这个名字与有理数相对,也就是说,它们不能以分数(或有限小数)的形式表示。然而,它们不能独立存在,所以数学家不得不定义一个由有理数和无理数组成的更大的数集。我们称它为实数。实数的集合用R表示。此外,无理数包括有理数的所有根集,以及其他著名的数字如e。