线性代数:向量组与向量组等价
向量组的秩可以通过多种方式计算,最常见的是通过转化为矩阵并计算矩阵的秩来得到。例如,若向量组A和B分别构成矩阵A和B,则向量组A和B的秩相等的一个充分必要条件是R(A)=R(B)=R(A,B),其中R(A,B)表示矩阵A和B拼接后形成的增广矩阵的秩。向量组等价向量组等价是一个关键概念,它指的是两个向...
如何通过心形线快速认识秩的几何意义?
因此,矩阵中的最大的不相关的列(行)向量的个数,就叫秩,可以理解为有秩序的程度。当然,还有另一种猜测(纯属猜测),翻译成“秩”,应该是想表达“等级”的意思。不同矩阵的秩有大小,就好比等级的高低了。讲得通俗一点,矩阵的秩可以理解为矩阵信息的等级划分,秩从某种程度上讲反应了矩阵内各个元素的相关性,秩...
数二线代的考研大纲
无解:系数矩阵的秩小于增广矩阵的秩,唯一解:系数矩阵的秩等于增广矩阵的秩等于未知数的个数,无穷多解:系数矩阵的秩等于增广矩阵的秩小于未知数的个数,推论:系数矩阵的秩=非自由未知量的个数=r;解向量组的秩=自由未知量的个数=n-r,一定理:AX=B有解的充要条件是R(A)=R(A,B)。
2023考研数学复习指导:线性方程组的考点
第一,齐次线性方程组有无零解和非齐次线性方程组是否有解的判定。对于齐次线性方程组,当方程组的方程个数和未知量的个数不等时,可以按照系数矩阵的秩和未知量个数的大小关系来判定,还可以利用系数矩阵的列向量组是否相关来判定;当方程组的方程个数和未知量个数相同时,可以利用系数行列式与零的大小关系来判定,还...
线性代数(高等代数)的基本思想
尽管这个公式在线性方程组的实际求解过程中并不实用,但是它在理论上不仅给出了具有任意个未知量的线性方程组的解,而且在形式上十分整齐,相当于是彻底解决了这类线性方程组的求解问题,所以是一个极其完美的定理。贝祖还从克拉默法则推导出:如果齐次线性方程组有非零解,那么系数矩阵行列式。
基于航天器可观测性理论的多源融合自主导航技术
但是判定非线性系统可观测能力时需要高阶Lie导数运算和格莱姆矩阵积分运算,难以得到解析表达式,因此往往通过数值方法计算可观测性矩阵并判断是否满秩(www.e993.com)2024年11月26日。2基于零空间的可观测能力判定方法基于零空间的可观测能力判定方法最早由Castillo等提出,通过判断零空间的维度来判定可观测能力。
席南华院士:数学的意义
那在这个时候,对这个方程来讲它就有很多内在的结构,包括系数矩阵的秩,增广矩阵的秩等等,这个秩就反映这个方程可解不可解。还有你做消元法的时候,你发现是对它们系数作些运算,这里面产生向量空间,方程的关系实际就是向量之间的线性组合、线性关系、相关无关等等。还有就是矩阵,你抓住了线性方程以及相关的概念之后呢...
2019考研数学 线性代数基础阶段复习指导
秩是一个非常深刻而重要的概念,就可以判断向量组是线性相关还是线性无关,有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。秩的灵活运用,充分体现了线性代数中推理...
名师全忠解析2015线性代数基础阶段复习
秩是一个非常深刻而重要的概念,就可以判断向量组是线性相关还是线性无关,有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。秩的灵活运用,充分体现了线性代数重...
线性代数拾遗(二):线性方程组的解集及其几何意义
,而且,常数向量就是行化简后矩阵的最后一列,而同样是齐次方程组的解。这是因为非齐次方程组只是最后一列由0换成了b,而且最后一列不会影响前面三列,所以齐次和非齐次方程组行化简后,变量的对应系数是相同的(系数矩阵就是前三列),非齐次方程组的解仅仅只比齐次方程组的解多了一个常数向量。例如齐次方...