为什么不能用 0 做除数?
可以验证"同余"是正整数集上的一个等价关系,我们如用"模7同余",可以将所有的正整数分为7个同余(等价)类,我们可以给他们命名,比如七个类分别为"星期一","星期二",...,"星期六","星期天".有了以上知识,现在可以开始构建数字了.1.自然数,整数,有理数的构造1.1.自然数集....
通过答案找规律,会一题就会一类题|整数|等式|数论|自然数|方程组|...
如果是小学阶段可能考正整数解,有些时候是自然数解。需要留意的是,正整数解是不能包括零的,自然数解则包括零。#深度好文计划#小学阶段可能是研究自然数解比较多。到了我们初中研究整数解比较多。有几个小问题需要强调一下,就是关于我们这个不定方程,它的解其实是有一些特性的。你只要解出来其中一组解,其他...
数论是一个重要而又混乱的数学领域
所以负整数、正整数和零都属于自然数的范畴。古老的数论其实是限定在“正整数”的范围里的,也就1、2、3……∞的自然数范围内,我们可以叫它“正整数的规律问题”,当然也就是“自然数的规律”,高大上的名字就是叫“数论”。而“数论”的重要性不用我多讲了,它是自然数最基础的东西,就是数学这个大厦的地基...
从自然数1到虚数i,数字系统的扩展
但如何统一表达这种情况呢,于是负数就出现了,自此数字从自然数扩大到整数集(正整数,0,负整数)。▲图片来自网络而除法呢,以前我们要求大数除以小数,如果不能整除就用余数表示,那怎么统一表示小数除以大数的情况呢?还有余数怎么办?有人说我们可以把两个数直接写下来,比如a/b表示不就行了,嗯,这就是分数。但分数...
有理数和无理数到底哪个多?
所以他得出一个结论:自然数、整数与有理数都一样多。因为它们都是可数的,也就是能按照一定的规则排列,且不会遗漏任何一个,这样就能和自然数一一对应。康托尔将它们的基数定义为:????0(阿列夫零)。从编号就能看出这是最基本的无穷。那么所有的无穷都是可数的吗?
数学必知必会:算术中的数
自然数:N??={0,1,2,...}非零自然数:N*=N??=N??=N>??={1,2,...}整数:整数包括正整数、负整数和零(www.e993.com)2024年11月17日。整数集合在数学上用Z表示。零是我们已经介绍过的,负整数则是在数轴上零点左侧的数(-1,-2,-3,...)。正整数加上负整数,连同零,形成了整数集合,它为解决债务和...
3的三个整数立方和有多少个解?全球40万台计算机助力,MIT研究登上...
1992年,数学家罗杰希思-布朗(RogerHeath-Brown)提出猜想,所有自然数都可以被写成3个数立方之和。2019年,数学家AndrewSutherland和AndrewBooker首次将42写成3个整数的立方和,这意味着100以内自然数全部被攻破。AndrewSutherland(左)和AndrewSutherland(右)。但是,两人并未...
从1到100有几个0
在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。如果不加特殊说明,所涉及的数都是整数,所采用的字母也表示整数。我们以0为界限,将整数分为三大类:1、正整数,即大于0的整数如,1,2,3···直到...
生命,宇宙以及一切事物的答案是……42?
一眼看下去,42是整数,是自然数,是偶数,是个合数。然后呢?1.楔形数可以写成三个不同质数的积的正整数叫做楔形数。在数论中有个特殊的函数,叫做默比乌斯函数。默比乌斯函数在计算与N互质的个数的问题,以及默比乌斯反演问题中有着重要的应用。
不瞒你说,这可能是世上最美丽的函数
所以Gamma函数是广义的阶乘函数,因为对所有的非负整数n,有Γ(n+1)=n!。但这是推广Gamma函数的唯一方式吗?不幸的是,答案是否定的。然而,如果我们添加某种约束的话,它就是唯一的了。这个约束与对数凸性(logarithmicconvexity)这个概念有关,因为稍微有点偏题,在这里就不详细讲了。具体的要求是函数logΓ是凸的...