求y=arctan[83x+1/(72x-90)]的导数计算
2024年4月5日 - 网易
反函数的求导公式为:[f^(-1)(x)]'=1/f'(y)。对于本题,函数y=arctan[83x+1/(72x-90)]的反函数为:tany=83x+1/(72x-90),此时有:y'=1/(tan'y)=1/(secy)^2=1/[1+(tany)^2],由tany=83x+1/(72x-90)两边平方有:(tany)^2=[83x+1/(72x-90)]^2,即:(tany)^2=[...
详情
反函数的求导公式为:[f^(-1)(x)]'=1/f'(y)。对于本题,函数y=arctan[83x+1/(72x-90)]的反函数为:tany=83x+1/(72x-90),此时有:y'=1/(tan'y)=1/(secy)^2=1/[1+(tany)^2],由tany=83x+1/(72x-90)两边平方有:(tany)^2=[83x+1/(72x-90)]^2,即:(tany)^2=[...