高中数学三角函数的公式(详细)
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)数学学习技...
【数学公式】初中数学三角函数公式汇总,没有比这更全的!
sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4)tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆五倍角公式◆半角公式(正负由所在的象限决定)◆万能公式◆辅助角公式◆余弦定理◆三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的...
三角函数积化和差公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]2、根据欧拉公式,e^Ix=cosx+isinx令x=a+b得e^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)所以cos(a+b)=cosacosb-sinasinbsin(a+b)=sinacosb+sinbcosa...
初中年级数学三角函数各类公式汇总
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB初中三角函数的公式(二)锐角三角函数公式sinα=∠α的对边/斜边cosα=∠...
成人高考高数一有哪些要记忆的公式?
(3)三角函数和差角公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);...
高中数学公式大全,高考文科必背数学公式整理!
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/...
高中数学三角函数万能公式
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.高中数学三角函数万能公式证明得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论...
08年高考数学备考:三角函数专题热点复习指导
(三)解三角形复习导引:正、余弘定理的重要作用是“边”与“内角的函数”的转化,如第4、5、6题。第2、3题提供了两条重要的思考方法。在三角形面积问题中最常用的公式是SVABC=-bcsinA,如第7、8题。在解三角形时,随时注意内角的变化范围,在第2、6题中都有体现。
高中数学知识点总结及公式大全
2、三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgAct...
三角函数是必考题,如何学会?先把这块基础抓好
(2)不妨设DC=x,则BD=2x,BC=AC=3x,根据正弦定理和余弦定理即可求出x,再根据三角形的面积公式计算即可。正弦定理和余弦定理有关的高考试题,典型例题3:在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a??﹣4bc=0....