数学爱好者必看:5个有趣的数学事实大揭秘!
科赫雪花的周长因每次迭代中边长按固定比例增加,以几何级数的形式增长,从而趋向于无穷大。但由于每次新增三角形的面积递减形成收敛数列,使得总面积增加到一个有限值。这展示了分形结构中的自相似性和无限细节特性。2.零是偶数,还是奇数?当我们谈论奇偶数的时候,实际上在讨论一个整数除以2的余数是否为0。不过...
发散级数怎样求和?|黎曼|定理|数列|傅里叶|幂级数_网易订阅
它是1和-1交替出现的无穷数列,当然不收敛。然而如果我们取这个数列的前n项的算术平均值,得到的称为原数列an的切萨罗算术平均数列,它的各项写出来就是,所以当n趋向于无穷大时An趋向于0。这样,对于这个发散的数列,通过平均化处理,我们获得了一个收敛的数列。一般地,对于一个数列an,如果它对应的切萨罗算术平均数...
数列极限重点中的重点:柯西收敛原理
柯西收敛原理就是:判断一个数列收敛的充分必要条件是,这个数列是基本列。必要性是十分显然的,如果数列收敛的情况下,根据数列极限定义,必然会收敛到一个值,而这两项充分靠后的情况下也是充分接近的,我们可以在两项中间任意取值都可以缩小到事先给定的任意程度,也就是小于ε。充分性的已知是基本列,需要证明这个基...
《数列极限敛散性判定与计算》内容小结、典型题与参考课件
(2)数列{xn}和{yn}收敛到相同极限,则数列{an}收敛且三个数列的极限值相等.4、单调有界原理单调有界数列必有极限(单调递增有上界,单调递减有下界)注不需要严格单调,单调有界原理仅仅用于判定数列极限的存在性.5、一个重要极限6、判定、验证递推数列存在极限并求极限值的常用思路:(1)基于单调有界...
你知道吗! 所有单调数列都是收敛的
证:若{an}有界,则由单调有界定理知,lim(n→∞)an存在,且lim?(n→∞)an=lim)n→∞)an.若{an}无界,则lim?(n→∞)an=+∞,显然,这里的收敛包括收敛于无穷大的类型,虽然数列(或函数)没有上界,但这也是分成两种情况的,一种是没有上界,且不收敛于无穷大的,这种情况下通常是在无穷大的地方振荡的...
《数学概观》:讲解大学数学基本思想的一本好书
在数学分析的课本中,大多对无理数的戴德金分割定义讲得比较抽象,然而在本书中,作者却讲得比较通俗而清楚(www.e993.com)2024年11月16日。有了实数的严格定义和最小上界(即上确界)公理,就能够顺理成章地给出数列极限的定义和函数极限的定义,并且推导出了几条常用的极限定理,如数列的单调有界定理、子列定理和柯西极限定理等,这样就为讨论函数...
2023考研数学大纲已公布,考试大纲中高等数学重难点内容分析
四、单调有界收敛准则单调有界收敛准则的定理内容相对比较简单:单调有界的数列必然收敛(单增找上界,单减找下界)。关于它的考察16年左右考过好几次,考到了都是压轴题的,所以冲击名校的学生需要拿下它的。它的难点主要集中在题型的多变性以及综合性上,首先需要自己快速识别出题的考察点,其次找准备题目信息使用该定理...
2022数学考研大纲解析:高等数学重难点内容分析
四、单调有界收敛准则单调有界收敛准则的定理内容相对比较简单:单调有界的数列必然收敛(单增找上界,单减找下界)。关于它的考察16年左右考过好几次,考到了都是压轴题的,所以冲击理想院校的学生需要拿下它的。它的难点主要集中在题型的多变性以及综合性上,首先需要自己快速识别出题的考察点,其次找准备题目信息使用该...