16个数论难题,你能看懂多少?解决多少?
第三个问题是勒让德猜想(Legendre’sconjecture):对任意一个自然数n,在n^2和(n+1)^2之间都至少存在一个质数p。按照我对这个领域的一点点了解,在这个方向上最重要的结果是伯特兰-切比雪夫定理:对任何大于3的自然数n,都至少存在一个质数p满足n<p<2n-2。勒让德猜想看起来只是伯特兰-切比雪夫定...
“万物皆数”的神秘教主——毕达哥拉斯
信徒希帕索斯发现单位正方形对角线长根号2,不是有理数,引发了“第一次数学危机”。(甚至有学者认为“黄金分割”也是毕达哥拉斯学派发现的,有它们的正五角星徽标为证。这可能是一种臆测,因为,“第一次数学危机”因学派后来发现不可公度的无理数根号2而起,有悖于无理数“黄金比值”的提前知晓,也许,学派选择正五角...
武汉高昇教育:初二上册数学知识点归纳,期末复习必备!
1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。3、勾股数满足的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40...
数学史上最难的问题,是这个问题,至今无解!
每个n(c)都有对应的勾股数,找到勾股数,这里说的勾股数是比21是长方形数(合数)加2??是四方等于5??时,用5(g2)+-2(g1)=3(a)7(b)就能分解。第三种分解法是要通过电脑编程做一个等腰直角三角形方块素合数分离模型,在这个模型中,可以精准分解一个合数,电脑不用一个一个计算范围内盲解,只是在得到满足...
蔡天新:数学与人类文明(一)
3、阿拉伯数系据考古学发现,刻痕记数大约出现在三万年以前,经过极其缓慢的发展,大约在公元前三千多年,终于出现了书写记数和相应的数系。可能是受手指表达数的影响,最早的表示数1,2,3和4的书写符号大多是相应数目的竖或横的堆积。前者有古埃及的象形文字、希腊的阿提卡数字和中国的纵式筹码数字和玛雅数字,后者有...