为什么发现个无理数,就引发了数学危机
而希帕索斯(Hippasus)正是在研究毕达哥拉斯定理时发现:正方形对角线与边长之比等于根号2,这是一个无理数,无法表示成两个整数之比,它的发现更是直接引发了第一次数学危机。发现了一个无限不循环小数,承认它的存在不就行了,为什么就引发数学危机了呢?原来,毕达哥拉斯学派对“数”持有一种信仰,而这种信仰的基...
有理数和无理数到底哪个多?
有理数是整数与分数的统称,当然包括有限小数及循环小数,因为他们都能化为分数的形式。而无理数则是无限不循环小数,比如圆周率π和自然对数的底e。得出这个结论的是一位驰骋在无限王国里的勇士——康托尔。他提出:衡量无穷不能用传统的数字,而是要用到超限数,又被称为“基数”或“势”。就如同超级富豪的财...
从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3等。因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。代数数vs.超越数:谁更高深?接下来,会遇到了两个稍微抽象的概念:代数数和超越数。代数数是那些能够成为某个整数系数多项式...
新版教材定义有理数的思考
新版教材有理数的定义:可以写成分数形式的数统称有理数。严格来说,分数是小学定义的,分子、分母不涉及负数,这样的定义存在定义不完整的嫌疑;退一步说,中学学了负数,分数形式的分子、分母可以是负数,那么中学也学了无理数,分数形式分子、分母可以是无理数码,显然不能,新版教材的定义存在悖论的嫌疑。所以说,新教材...
如何用基础数学证明0.999...=1?无穷带给人类的困惑和深层思考
再说一个相对高深的例子,实数是由有理数和无理数组成的,有理数和无理数都有无穷多个,你认为有理数和无理数谁多呢?答案是:无理数更多,而且比有理数多得多!有理数的数量在无理数面前简直就是渣渣。可以这么通俗理解,有理数的数量是无穷,那么无理数的数量就是无穷的无穷。
为什么一定要有一个数的平方等于-1?
正数、负数、有理数、无理数在欧洲,负数的概念迟至12世纪末,才由意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci,约1170—约1250)做出正确的解释(www.e993.com)2024年11月17日。但直到18世纪,欧洲仍有一些学者认为负数是“荒唐、无稽的”。他们振振有词地说,零是“什么也没有”,那么负数,即小于零的数是什么东西呢?难道会有什么东西比“...
数论问题研究探讨004|定理|数列|代数|无理数|有理数_网易订阅
a??=2b??若√2是有理数,方程必有解(a,b)。因,(a,b)=1则b∣a??,素因子p∣a??从而有p∣a。这显然与前提矛盾。有,b不可能是1(是1方程不成立),所以√2是无理数。书上有第二种方法,是教科书中常用的,很简单我就不写了。
无理数和有理数的区别
1、两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
这种无理数中的无理数,让数学家直呼“根本停不下来”
事实上,解决化圆为方这个难题的关键,正是犹如之前数学家将实数分为有理数和无理数一样——需要将复数也分为两个集合。对于复数来说,其中许多都等于整系数多项式的根,数学家就把这个称作代数数。每个有理数都是代数数,一些无理数也是,例如??3;√2,还有即使是虚数i,它也算,因为它是x2+1的根。
有理数循环小数的奥秘:为什么一定会循环?
有理数和循环小数之间有着密切的联系。了解这个联系,不仅可以让我们更好地理解数学中的小数概念,也可以帮助我们更好地理解和应用有理数和无理数的概念。数学中的每一个概念都有其深刻的内涵和独特的魅力,只有我们深入探索和理解这些概念,才能真正领略数学的奥秘和美妙。