线性代数学与练第15讲 :矩阵的LU分解与几何变换的矩阵方法
前面我们讨论了两种线性方程组求解的直接解法,一种是基于矩阵理论的高斯消元法,一种是基于行列式理论的克莱默法则.在高斯消元法对系数矩阵,或增广矩阵实施初等变换,也就是线性方程组消元的过程中,一般会将系数矩阵,或增广矩阵转换为上三角形矩阵,这也就给出了矩阵的一种分解形式——LU分解。本讲的任务是首先...
线性代数学与练第04讲:矩阵的定义与基本运算
矩阵最早也确实来自于方程组的求解,它就是用来表示方程组的系数及常数项的.作为求解线性方程组的工具,矩阵形式在我国东汉前期的《九章算术》中就已经出现并使用,《九章算术》中用分离系数法表示线性方程组,得到了它的增广矩阵,并且在消元过程中所使用的方法也就相当于是矩阵的初等变换.中文中出现矩阵概念最早是192...
线性代数学与练第05讲 矩阵的乘法及相关运算性质
解:两个矩阵的乘法运算要求第一个矩阵的列数与第二个矩阵的行数相同才有效.(1)由于矩阵的列数与矩阵的行数都是2,相等,故可以执行乘法运算,并且矩阵为2行,矩阵为1列,故的结果矩阵是的矩阵.由定义计算可得由于矩阵的列数为1,矩阵的行数为2,不相等,所以不能执行运算....
应当尽快建立“新媒体矩阵学”
中共四川省委四川省人民政府决策咨询委员会副主任、成都市社科联主席、四川省社会科学院博士生导师李后强教授在2022年12月28日举办的“2022政务新媒体融合发展大会”上表示,为了解决新媒体深度融合发展问题,应当尽快建立“新媒体矩阵学”。李后强在题为《政务新媒体走向矩阵新格局》的主旨报告中指出,党的二十大要求建设...
逆矩阵解线性方程组详细过程
2、线性方程组可以写成AX=b其中A是系数矩阵,x为所要解的列向量,b为等号右边的数所构成的列向量,等式两边同时乘以A-1(就是A的逆矩阵)可得,A-1AX=A-1b,即Ex=A-1b,即x=A-1B.,然后利用对增广矩阵A|B进行初等变换,变成E|A-1B,就解出了x.判断A的行列式是否为0,前提是A的行列式不是0才...
2017考研数学:矩阵线性方程的求解方法分析
一、矩阵线性方程的判断和求解注:这是2016年数一(20)考题(本题满分11分)从上面的例题看到,要判断矩阵方程是否有解,有解时是有唯一解还是有无穷多解,用系数矩阵与增广矩阵的秩的关系进行判断,具体求解时用初等行变换进行计算,这一点与线性方程组的情况类似,但是要提醒各位考生,矩阵方程的计算量比较大,因此大家...
矩阵线性方程的求解方法分析
摘要线性方程组是线性代数的基本内容,是考研数学的核心考点之一,几乎是每年必考。线性方程组的一种拓展形式是矩阵线性方程,即关于未知
中国人或在战国晚期就能进行正负数运算 比古印度正负数四则运算...
我国古代数学家(以下简称“中算家”)精心设计的算法程序,类似今天线性代数中对方程组的增广矩阵进行初等变换的消元法。在“方程”求解过程中,为了消元而用一列数去减另一列数时,有可能会遇到小数去减大数的情况,为了保证方程组按筹算法则均能获得结果,引入负数及其运算法则便是摆在中算家面前的唯一选择了。
筹算:小棍上的中国古代数学智慧
筹算还可以求解线性方程组,在公元前1世纪成书的《九章算术》中,用一种称为“方程”的方法来表示问题和求解,其表达方式和运算方法都跟现代的增广矩阵很相似,而求解线性方程组的增广矩阵方法在欧洲是18、19世纪之交才出现的。邹大海介绍,在筹算的方程中,不同位置具有指示不同未知量和常数项的作用,相当于现代的分离...
2023考研数学复习指导:线性方程组的考点
第三,齐次线性方程组基础解系的求解与证明。利用系数矩阵的极大线性无关组的内容进行分析;第四,齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。如果方程组的方程个数和未知量个数不相等时,只能对其系数矩阵或增广矩阵进行初等行变换,化为阶梯形矩阵来进行讨论;如果方程组的方程个数和未知量个数相同时,初等...