他22岁便摘得一颗数论明珠,还是数学和科学的多面手
比如中学时,当时还没有开设三角函数的课程,他便从余弦定理开始重新发现了三角函数,在数学上表现出了卓越的才能。于是父亲改变了初衷,开始帮助和引导他。范德瓦尔登非常喜欢一个叫“毕达哥拉斯”的数学游戏,而他的两个兄弟对此不太感兴趣。这样他总是一个人玩,有时父亲和他一起玩。母亲虽对数学不太感兴趣,但却是...
黎曼对欧拉函数的研究,开创了数论的新纪元,极大拓展了数学深度
进一步还会知道,对于每一个除(有限多个极点外)处处解析的函数f(s),f'(s)/f(s)的极点就是f(s)的极点和零点。f’(s)/f(s)的极点阶数均为1,而留数就是相应零点的阶数或者相应极点的阶数反号。利用这些事实,就可以得到显式公式式(2)这里ζ(s)的零点都要按重数计数,就是说,如果p是ζ(s)的一个k阶...
周期信号的傅里叶变换-信号与系统考研复习
公式:周期信号的傅里叶级数展开式通常表示为一系列正弦和余弦函数的和,其中每个分量的系数(即傅里叶系数)反映了该频率分量在信号中的贡献大小。??傅里叶变换:连续与离散的桥梁??虽然傅里叶级数已经为我们提供了周期信号在频域上的描述,但更一般地,我们还会用到傅里叶变换来处理非周期信号或周期信号的...
基于Hirota方法探求非零边界条件下 MNLS/DNLS方程的孤子解
由以上分析可见,若α0与ξ0简单地取x,t的线性函数,通过Hirota双线性导数变换法可以求解的非零边界条件的类型有常数边界、平面波边界、驻波或正/余弦边界。要使波函数在无穷远处趋近于驻波边界条件,即只含时间变量x,即让α0-3ξ0仅随时间参量x改变,可以假定α0,ξ0中t的参数均为零,即ω0=...
关于印发《湖南省2024年普通高等学校专升本公共科目考试要求》的...
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
2025年杭州电子科技大学硕士研究生入学考试601数学分析考试大纲已...
(5)掌握幂级数收敛半径与收敛域的概念与求法、掌握幂级数的基本性质,会求幂级数(级数)的和函数(和),能够将函数展开为幂级数;(6)会将函数按要求展开成傅立叶级数(余弦级数、正弦级数)(www.e993.com)2024年12月20日。六.多元函数微分学考试内容:多元函数的极限与连续、全微分、(高阶)偏导数、方向导数、泰勒公式、隐函数求导及几何应用...
【备考参考】湖南省2024年专升本公共课考试大纲
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
收藏备用!湖南省2024年专升本公共科目考试要求
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
发散级数怎样求和?
不过,如果欧拉不用直接赋值法,而是对等式左端的函数1/(1+x)取时的极限,就得到与切萨罗广义求和算术平均法结果相同的另一种意义下的广义和将这个法子一般化,我们就得到了发散级数的第二个经典的广义求和法:对于给定的发散级数,形式地写出对应的幂级数。假如这个级数关于满足不等式0<x<1的每一个数x都收敛(...
2021考研高数必考知识点:无穷级数
④掌握ex、sinx、cosx、ln(1+x),(1+x)α的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区...