专题讲座09:多元函数几个基本概念及相互关系的讨论与偏导数的计算
定义区域内的点,也就是函数的连续点,所以由函数连续的定义,极限值等于函数值,直接代入坐标点,得到函数值即为极限值。对比而言,好像极坐标方法要复杂了。但是它最大的优势是将两个变量的求极限问题转换成了单变量的求极限问题。由于的这种逼近过程,也就是距离,可以用极坐标中的来体现,这样也就将相对复杂的二...
专题讲座05:一元函数的导数与微分问题求解注意事项及典型题分析
函数在分界点处左、右两侧表达式不同的时候,考虑左右导数:导数存在的充要条件是左、右导数存在且相等。(3)绝对值函数的可导性的讨论.绝对值函数可导性的讨论与导数的计算,一般改写成分段函数讨论。(4)当问题中没有可导的条件,而解题中又需要用到导数,或微分的结论的时候,考虑用导数定义,判定函数的可导性...
大学高等数学:第二章第六讲高阶导数及n阶导数的求法
大家好,我们上节课学习了关于三种分段函数求导法,回顾一下,分别是按定义求分界点处的导数或左右导数、按求导法则分别求分段函数在分界点处的左右导数、分界点是连续点时,求导函数在分界点处的极限值这三种方法,有效的掌握这三种方法分段函数求导基本都可以解决了。今天我们学习的是高阶导数,我们知道,变速直线运动的...
第10讲:《偏导数及其基本计算方法》内容小结、课件与典型例题与练习
偏导数的计算过程其实就是一元函数的求导过程:对于非间断点处,使用一元函数求导运算法则求多元函数关于某个变量的偏导数,求导过程中其余变量视为常量即可.对于间断点处的偏导数使用偏导数的定义判断偏导数的存在性,并计算偏导数.对于具体点处的偏导数一般采用“先代后求”的计算法,或者定义法计算偏导数,如果需要...
2016考研高数常考题型:导数微分及求函数导数
题型六、导数微分的定义及函数可导性判断。可导必连续,连续不一定可导.分段函数分界点处的导数一定要用导数的定义求.题型七、显函数、隐函数、由参数方程确定的函数的求导问题。常用的求函数导数的方法有取对数法。题型八、分段函数的可导性判断。这种题型一般情况下,题目中会有未知的参数,通过对于分段函数的在间...
高等数学重要知识点总结
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的...
高中数学基础知识点大全
2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。五、高中数列基本公式:...
历年高考数学易错点大汇总 想少走弯路的看过来
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。8易错点:求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
2016年高考数学备考:容易混淆的知识点总结
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。8易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
第11讲:《导数的概念与基本性质》内容小结、课件与典型例题与练习
导数值等于极限值;因为导数存在,所以极限存在,从而由导数的存在性,借助极限式变形可以用来求其他极限式的极限。如四、导数定义应用解题类型(1)抽象函数的导数的存在性和导函数的计算,分段函数分界点导数的存在性与导数的计算,一般使用导数的极限定义来判定与计算....