为什么要讲方程?走进不一样的数学
“直角三角形中,两条直角边长度的平方之和,等于斜边长度的平方。a2+b2=c2”这是连小学生都知道的勾股定律,又叫毕达哥拉斯定理。它告诉我们什么?直角三角形的三个边之间有什么关系。它为什么重要?提供了几何和代数之间的重要联系,使我们能够根据坐标计算距离。它也催生出了三角学。它带来了什么?测绘、...
被数学选中的人:现代概率论之父柯尔莫哥洛夫
柯尔莫哥洛夫对“质数有无限多个”“等腰直角三角形的斜边不能用直角边的整数倍表示”等发现给予了最高的赞美之词。接下来,他详细叙述了注重实用性的古巴比伦数学同理想主义的古希腊数学经由中世纪的阿拉伯数学,最终发展为近代欧洲数学的历程,实在是令人兴致盎然。我从这段历史中了解到了很多史实。比如,我虽然知道...
初中数学三条难垮的深沟——一个初三男生的总结
根据图片,大概可以推测出△CGH为等腰直角三角形,由此得出CD+√2CG=BC。光有推测还不行,接下来还得进行证明:证明如下:∵G为BE中点,∠BDE=90°∴DG=0.5BE=BG(直角三角形斜边中线等于斜边一半)∵DE=BD,G为BE中点∴DG平分∠BDE,DG⊥BE(等腰三角形三线合一)∴∠EDG=∠BDG=45°∵DG=BG∴∠DBG=...
100年前,你能考上北大么?_澎湃号·湃客_澎湃新闻-The Paper
1.自二等边三角形底边上任意一点引他二边之平行线,所得平行四边形之周围有一定之长??2.直角三角形内切圆之直径与斜边之和等于他二边之和??(以上几何)北京大学1917年预科入学试题(数学·乙部)1.试分ab(x2-y2)+xy(a2-b2)为因数??2.有二位数字之数,其数等于各位数字之和之五倍;又此数加...
18个哲学悖论:因为荒谬,我才相信!|必然性|哲学家|决定论|苏格拉底...
毕达哥拉斯证明了关于直角三角形斜边与两直角边关系的定理,即著名的“毕达哥拉斯定理”(即“勾股定理”):直角三角形斜边的平方等于两直角边平方之和。但是,毕达哥拉斯的学生希帕索斯却在研究正方形的对角线时发现,这条对角线(亦即等腰直角三角形的斜边)既不能用整数表示,也不能用整数之比(分数)表示。因为,如果...
1分钟不到告诉你直角三角形两直角边的平方和为啥等于斜边的平方
1分钟不到告诉你直角三角形两直角边的平方和为啥等于斜边的平方1分钟不到告诉你直角三角形两直角边的平方和为啥等于斜边的平方特别声明:以上文章内容仅代表作者本人观点,不代表新浪网观点或立场(www.e993.com)2024年11月8日。如有关于作品内容、版权或其它问题请于作品发表后的30日内与新浪网联系。权利保护声明页/NoticetoRightHolders...
斜边相等的两个直角三角形拼成四边形,如何求对角线长?
如图,在等腰直角三角形ABC中,∠BAC=90°,以BC为斜边在BC右侧作RT△BCD,∠BDC=90°,连接AD.若AB=5√2,CD=8,则AD=___.二、分析易求得AC=5√2,BC=10,BD=6,即四边形的四条边和一条对角线都已知,求另一条对角线的长.如果你听说过“托勒密定理”,这道题可以秒解;如果你只知道四点共圆,这道...
基本图形分析法:详细分析直角三角形斜边的中线问题(三)
分析方法导引当几何问题中出现了直角三角形斜边上的中点时,就应想到要应用直角三角形斜边上的中线的基本图形的性质进行证明。接下来就应将斜边上的中线添上。进一步的分析就是:若斜边上的中点是条件,则直接推得斜边上的中线等于斜边的一半,并可直接应用两等腰三角形
求图形面积的综合题,难度不大但很典型,关键是直角三角形性质
(直角三角形中30°的角所对直角边等于斜边的一半)AB=AC?cos30°=12√3,(三角函数的意义)∵DE⊥AC,DE=5,∴S四边形ABCD=S△ABC+S△ACD=1/2AB?BC+1/2AC?DE=1/2×12√3×12+1/2×24×5=72√3+60,在Rt△ADE中,AD2=AE2+DE2(勾股定理)...
为什么要有一个数的平方等于-1?
无理数的出现,可以追溯到相当久远的年代。大约公元前5世纪,毕达哥拉斯学派的门人希帕斯发现,等腰直角三角形的斜边与直角边的比不可能表示为既约分数(即几何上的“不可公度”)。希帕斯的思路说来也简单,他采用了“反证法”,即先假设能表示为既约分数(即p,q没有公因子),然后设法推出矛盾。过程如下:...