张朝阳求纳维尔斯托克斯方程的特解
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
为什么雨滴落下不会砸死人?《张朝阳的物理课》推导斯托克斯定律
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
不定积分的求法-不定积分常用方法小结
10.∫1+x3dx10.\int_{}^{}\sqrt{1+x^{3}}dx椭圆积分<11.椭圆积分(1)∫dx1??k2(sinx)2(2)∫1??k2(sinx)2dx(k2<1)11.椭圆积分(1)\int_{}^{}\frac{dx}{\sqrt{1-k^{2}(sinx)^{2}}}(2)\int_{}^{}\sqrt{1-k^{2}(sinx)^{2}}dx(k^{2}<1)12.∫ln(tanx)dx12.\int...
最美的公式:你也能懂的麦克斯韦方程组(积分篇)
如果这是一个连续的带电体(比如一根带电的线),那我们就再次举起牛顿爵爷留给我们的微积分大刀,哗啦啦地把这个带电体切成无数个无穷小的部分,这样每一个无穷小的部分就可以看做一个点电荷,然后把这无数个点电荷在那点产生的电场强度叠加起来(就是积分)就行了。我们上面的思路其实就是秉着“万物皆可切成点,万...
最美公式:你也能懂的麦克斯韦方程组(积分篇)| 众妙之门
如果这是一个连续的带电体(比如一根带电的线),那我们就再次举起牛顿爵爷留给我们的微积分大刀,哗啦啦地把这个带电体切成无数个无穷小的部分,这样每一个无穷小的部分就可以看做一个点电荷,然后把这无数个点电荷在那点产生的电场强度叠加起来(就是积分)就行了。
2023届考研数三(303)重点专题系列班:第一讲无穷级数
7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.8.掌握e的x次方,sinx,cosx,ln(1+x)及(1+x)的a次方的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数....
关于量子力学的基本原理
经典力学中隐含三条假设:(1)无限精细的经验可能性;(2)计算要素与观察要素等同;(3)确定论的预言。电磁学的对象是电磁场,电磁场状态需要用连续的空间函数即每一点的场强描述,特别地,电磁场的能量是连续空间函数能量密度的空间积分。连续空间函数处理的是光的波动理论,曾经代表经典物理学的辉煌。连续区物理学中最重要...
量子力学之路(2)——从微分方程中看天体运动,数学是宇宙的诗歌
求出坐标系中的加速度,把第一步中的力写成系统中每个物体的位置和速度的函数,让置步骤2和步骤3的结果相等,匹配基向量的系数。这样,你已得到每个物体的三个微分方程(如果考虑到力矩,还可以得到一些额外的方程)。步骤1:寻找力让我们从太阳系中的任意一个天体开始。根据牛顿万有引力定律,有...
【高中数学】高中数学40条秒杀公式,90%的高中生后悔太晚看到!
举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。an=1×1/n=矩形面积>曲线下面积=bn。当然前面要证明1>ln2。注:仅供有能力的童鞋参考!!另外对于这种方法...
泰勒级数的物理意义
再求不定积分f2(x)=-(1/2)f''(a)(x-a)^2+C,C就是那个高阶无穷小(需要证明)所以f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2+o(x-a)^3依次类推,最后就有了泰勒公式。另一种证明过程干脆就是先写出来g(x)=a0+a1(x-a)+a2(x-a)^2+...+an(x-a)^n,然后从等式序列...