国网信通亿力科技申请结合关联规则挖掘和KMeans聚类算法的用电...
专利摘要显示,本发明涉及一种结合关联规则挖掘和KMeans聚类算法的用电异常群体识别方法,包括以下步骤:步骤1.从智能电表、传感器设备或电力公司的数据库中获取用户的用电数据;步骤2:对数据预处理:清洗、去噪和归一化处理采集到的数据;步骤3:基于关联规则挖掘算法,发现不同用电特征之间的关联关系;步骤4:从关联规则挖掘...
详解C++ 实现K-means算法
K-means算法是一种非常经典的聚类算法,其主要目的是将数据点划分为K个集群,以使得每个数据点与其所属集群的中心点(质心)的平方距离之和最小。这种算法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。二、K-means算法的基本原理K-means算法的基本原理相对简单直观。算法接受两个输入参数:一是数据集,二是...
K均值聚类算法
K均值聚类算法,可以帮我们完成大量数据的分类任务。商业务中,精细化运营的前提是对用户进行分层,然后根据不同层次的用户采取不同的运营策略。这时候可以收集用户的消费频率、消费金额、最近消费时间等消费数据,并使用K-means算法将用户分为不同的层级,然后针对高价值用户,可以提供专享活动或个性化服务,提高用户价值感和...
算法人生(16):从“K均值 & C均值”看“为人处事之道”
K-means算法是一种无监督学习方法,它的目标是将数据集划分为K个不重叠的子集(簇),使得每个数据点到其所属簇中心(质心)的平方距离之和最小。这个算法假设簇是凸的,并且每个数据点只属于一个簇。大致步骤为:初始化:随机选择K个数据点作为初始质心。分配:将每个数据点分配给最近的质心所在的簇。更新质心:重新...
钉钉杯大数据竞赛必须熟练的11种数据挖掘算法
K-means算法是一个迭代优化算法,每次迭代我们需要重新计算簇的中心。一般就是通过计算每个簇类所有样本的平均值来获得。可以使用Numpy里面的mean方法np.mean(x,0)来计算均值。K-means是一类非常经典的无监督机器学习算法,通常在实际应用中用于从数据集中找出不同样本的聚集模式。其含义实际上就是对于每一个簇...
Nature Genetics | BANKSY:革命性算法,重塑空间组学数据分析
BANKSY算法BANKSY算法原理BANKSY算法作为空间组学数据分析的一种革命性技术,其核心原理基于高级数据处理和算法创新,为细胞类型识别和组织域分割提供了新的视角(www.e993.com)2024年11月14日。数据嵌入与空间关联多维数据融合:BANKSY算法首先将细胞的基因表达数据和空间信息进行融合,通过创建一个多维数据空间,使得每个细胞不仅携带其自身的表达信息,还...
概率、统计学在机器学习中应用:20个Python示例|算法|贝叶斯|...
kmeans=KMeans(n_clusters=3)kmeans.fit(X)plt.scatter(X[:,0],X[:,1],c=kmeans.labels_)plt.title("K-meansClustering")plt.show()租售GPU算力租:4090/A800/H800/H100售:现货H100/H800特别适合企业级应用扫码了解详情??...
R语言K-Means(K均值聚类)和层次聚类算法对微博用户特征数据研究
K-means算法将该样本集分为4类,其中最多的为cluster-2,有39886条记录,其次是cluster-3,有4561条记录,再者是cluster-1,为3514条记录,cluster-4,为2398条记录。从聚类数量来看聚类数目分布合理,没有出现过少的离群点。从聚类中心来看,第二类别是微博数较少,但是粉丝很多,并且注册时间较早的一批用户,并且已经是...
大数据技术用户画像之RFM模型和KMeans聚类算法
1、算法原理在正式开始之前,我们可以先通过几个网址来感受一下KMeans的魅力。首先是httpshabal.in/visuals/kmeans/3.html,我们可以通过刷新页面多次,来观察不同的KMeans聚类过程。下图是我把四次不同的结果合并在一起的一个结果。通过观察,我们可以得到初步结论:中心点数量4,起始位置不相同。中心点...
使用K-means 算法进行客户分类
K-Means聚类是一种常用于将数据集自动划分为K个组的方法,它属于无监督学习算法。K-Means目标K均值的目的是使每个点到其对应的聚类质心的距离的平方和最小。给定一组观测值(x1,x2,...,xn),其中每一个观测值都是d维实数向量,K均值聚类旨在将n个观测值划分为k(k≤n)个集合S={S1,S2,...,Sk}以最小...