证明n^2+1级数里有无穷多的素数
Sn±A其中S是自然数里的素数,n是正整数,A是素数出现合数的初始位置。第五步,分析。级数n^2+1一定包含在数列(级数)6N+1里面,而6N+1里面的素数是有无穷多的。只要项数级数N=n^2/6不与合数级数组Sn±A重合(这两个级数都是项数),就证明了素数写成n^2+1有无穷多。我们看到级数n^2/6与级...
我研究数论二十三年的成果总结
这些“合数项”等差数列得到的N仅仅是合数的项数,把N代入数列2N+1才是一个合数。通过上面的“合数项数列”我们注意到,出现一个素数后(比如3),那些素数项N的倍数(N=3k+1)就都是由这个素数倍数加位置数形成的合数,而合数是有周期的,周期就是素数本身。顺序数N是连续的,这样就总会有被周期跃过的项数N,而这...
第35讲:《同号(正项)级数敛散性判定法》内容小结、课件与典型例题...
注1一般依据通项结构寻找比较级数,比如通项中包含有次方项,考虑几何级数比较;包好有的幂级数结构或者n的有理式结构考虑级数(一般值的选取为分母的最高次幂减去分子的最高次幂),有阶乘项可以考虑的阶乘级数比较。注2对于已知了级数收敛、发散或数列收敛、发散条件的抽象级数敛散性的判定与证明一...
2024年南京邮电大学硕士研究生考试大纲
(1)理解掌握数项级数的收敛、发散、绝对收敛与条件收敛等概念,熟练掌握收敛级数的性质和正项级数与任意项级数的敛散性判别法,掌握几何级数、调和级数与p级数的性质。(2)掌握函数项级数与函数序列的收敛、一致收敛概念,熟练掌握极限函数与和函数的分析性质和函数项级数(数列)的一致收敛性判别。(3)理解幂...
【考研加油站原创】回归原点——浅谈08年数一真题
总的来说,今年的小题特点就是注重基础,从基础出发,选择第二题求梯度、第三题高阶线性常系数微分方程解的结构、第七题max函数的分布、第八题相关系数及正态分布的组合、填空第一题一阶线性齐次方程、第二题微分几何应用、第三题级数收敛半径的确定及端点敛散性讨论(收敛域和收敛区域的不同)、第四题求二类曲面...