新一代高分辨化学成像显微镜,突破荧光限制,开启生命科学新纪元!
mIRage不仅具备传统荧光显微镜的荧光成像功能,还采用新型光学光热红外(O-PTIR)技术,能够对物质的分子结构进行无荧光标记的化学成像,解决了传统化学成像空间分辨率低的问题,其化学成像分辨高达500nm,可在亚微米尺度上对细胞或组织内的目的蛋白或分子进行表征。这为代谢组学、细胞生物学、药物学等多个生命科学研究领域提...
让细胞组织膨胀后再观察 新显微成像法分辨率可达20纳米
如果想看到高分辨率物体,例如细胞中的纳米级结构,就必须使用高功率且昂贵的超分辨率显微镜。试想,如果让物体膨胀变大,那观察可能就会变得更容易。据最新一期《自然·方法》杂志报道,美国麻省理工学院的研究人员开发了一种在成像前先让组织膨胀的方法,最高可将其扩大20倍。这种简单且廉价的方法可能为几乎所有生物...
火眼金睛!清华大学团队研发新型超级显微镜
区别于传统光学显微镜聚焦于单个细胞内的物质交互过程,该仪器使得研究人员可以首次以全景方式动态观测哺乳动物器官尺度细胞精度的组织异质性,在活体组织中原位研究大规模多样化细胞在完整生理与病理过程中的动态交互行为。小鼠全脑皮层范围三维神经成像目前,研究团队利用RUSH3D系统在脑科学、免疫学、医学与药学等多学科产出...
“看穿”大脑!清华大学团队研制超级显微镜
清华大学团队研制超级显微镜。清华大学供图走进清华大学成像与智能技术实验室,凭借一台前所未有的“超级显微镜”——RUSH3D,研究者们正在连接微观与宏观世界的介观尺度上全景、动态、长时程地观测着哺乳动物活体组织中大规模多样化细胞间的交互行为,探索着这些生命活动的瑰丽奥秘。仪器是科学研究的“先行官”。显微仪...
“看穿”大脑!我科学家“上新”超级显微镜
区别于传统光学显微镜聚焦于单个细胞内的物质交互过程,RUSH3D使得研究人员可以首次以全景方式动态观测哺乳动物器官尺度亚细胞精度的组织异质性在活体组织中原位研究大规模多样化细胞在完整生理与病理过程中的动态交互行为这一前所未有的时空跨尺度成像能力
JCO | 深度学习AI模型利用病理组织切片预测乳腺癌和卵巢癌中的HRD...
在全球临床实践中,对苏木精和伊红(H&E)染色后的组织进行光学显微镜形态学检查成为肿瘤活检的常规处理手段,并可用于实体瘤诊断(www.e993.com)2024年11月22日。近年来,人工智能(AI)方法层出不穷,其能够从H&E染色的组织病理学切片的数字图像中预测基因组变化,并逐渐成为改变癌症诊断和临床治疗的方式方法...
微型化多光子显微镜揭秘大脑,开启自由活动动物成像新范式...
2017年,超维景核心团队成功研制仅2.2g的超高时空分辨微型化双光子显微镜,在国际上首次获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像,被评为“2017年度中国科学十大进展”和《NatureMethods》“2018年度方法”(无限制行为动物成像),开启自由活动动物成像新范式,研究成果可应用于脑认知基本原理研究、脑...
快讯!清华大学科研团队研发一台超级显微镜,可以“看穿”大脑!
凭借一台前所未有的“超级显微镜”——RUSH3D研究者们正在连接微观与宏观世界的介观尺度上全景、动态、长时程地观测着哺乳动物活体组织中大规模多样化细胞间的交互行为探索着这些生命活动的瑰丽奥秘9月13日清华大学戴琼海团队在国际顶尖期刊《细胞》(Cell)发表最新工作宣布新一代介观活体显微仪器RUSH3D...
“看穿”大脑!清华大学团队研发出新一代介观活体显微仪器RUSH3D...
这一前所未有的跨空间和时间的多尺度成像能力,为复杂生物过程研究提供了全新视角。区别于传统光学显微镜聚焦于单个细胞内的物质交互过程,RUSH3D使得研究人员可以首次以全景方式动态观测哺乳动物器官尺度细胞精度的组织异质性,在活体组织中原位研究大规模多样化细胞在完整生理与病理过程中的动态交互行为。
肾脏病理| ANCA相关性肾小球肾炎
??预后不良因素:肌酐水平升高、蛋白尿、正常肾小球减少、慢性组织学指标升高??ANCA检测对新月体GN的敏感性为80%,特异性为96%显微镜下??坏死性新月体肾炎??IF:很少或没有免疫球蛋白或补体沉积??EM:免疫复合物型沉积很少或没有主要鉴别诊断??ANCA阴性新月体GN??抗GBM病??免疫复合物介导的新...