告天下学子书【上】:线性代数的中国起源,外星人是蛮夷
“矩阵的左乘、右乘,初等矩阵,矩阵的初等行变换、初等列变换,秩,分块,迹,特征向量,正交化,相抵,相似,对角化”;“向量组的秩,线性空间,线性空间的八条运算法则(为什么保证空间线性性的法则是这八条而不是别的法则),线性空间的维数,线性空间的和与直和线性空间的维数与生成该空间的向量组的秩相等的原因。”...
线性代数:向量组与向量组等价
特别地,等价的向量组具有相同的秩,但秩相同的向量组不一定等价。向量组的秩可以通过多种方式计算,最常见的是通过转化为矩阵并计算矩阵的秩来得到。例如,若向量组A和B分别构成矩阵A和B,则向量组A和B的秩相等的一个充分必要条件是R(A)=R(B)=R(A,B),其中R(A,B)表示矩阵A和B拼接后形成的增广...
应当尽快建立“新媒体矩阵学”
媒体矩阵内部的沟通连接和相互作用,机制灵活,有机可变,能量更大,实效倍增,本质上是多点、多极、多元的媒体账号的资源整合。经过十多年的发展,国内已经打造了丰富多样的矩阵运营模式。李后强认为,“矩阵”(Matrix)是数学的经典概念,一般特指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,...
2017考研数学:矩阵线性方程的求解方法分析
从上面的例题看到,要判断矩阵方程是否有解,有解时是有唯一解还是有无穷多解,用系数矩阵与增广矩阵的秩的关系进行判断,具体求解时用初等行变换进行计算,这一点与线性方程组的情况类似,但是要提醒各位考生,矩阵方程的计算量比较大,因此大家要通过适当练习来提高自己的运算能力。
矩阵线性方程的求解方法分析
从上面的例题看到,要判断矩阵方程是否有解,有解时是有唯一解还是有无穷多解,用系数矩阵与增广矩阵的秩的关系进行判断,具体求解时用初等行变换进行计算,这一点与线性方程组的情况类似,但要提醒各位考生,矩阵方程的计算量比较大,因此大家要通过适当练习来提高自己的运算能力。
线性代数拾遗(一):线性方程组、向量方程和矩阵方程
把这个方程展开来看,就是:等同于和所以这个问题其实和一个线性方程组是等价的,这个线性方程组对应的増广矩阵就是():化简为行最简形式就是:可以看出,这个线性方程组的解为和(www.e993.com)2024年11月25日。继而我们就知道了b和a1,a2的关系:我们反过来回顾这一过程,可以发现,之前我们线性方程组的的增广矩阵表示形式,其实也...
线性代数(高等代数)的基本思想
有了矩阵秩的精练语言,我们就可以讲清楚线性方程组解集的几何结构,特别是齐次线性方程组解空间的性质:(1)齐次线性方程组解空间的结构如果齐次线性方程组的系数矩阵的秩为,当小于未知量的个数时,该方程组有非零解,此时该方程组的基础解系含有个向量。基础解系中这个向量不仅是线性无关的,并且线性方程...
数二线代的考研大纲
线性方程组的解(这里可解释上面最后两个小圆点)一应用:线性方程组不同解的情况的充要条件,无解:系数矩阵的秩小于增广矩阵的秩,唯一解:系数矩阵的秩等于增广矩阵的秩等于未知数的个数,无穷多解:系数矩阵的秩等于增广矩阵的秩小于未知数的个数,推论:系数矩阵的秩=非自由未知量的个数=r;解向量组的秩=...
2023考研数学复习指导:线性方程组的考点
可以利用系数行列式与零的大小关系来判定,还可以利用系数矩阵有无零特征值来判定;对于非齐次线性方程组,可以利用系数矩阵的秩和增广矩阵的秩是否相等即有关矛盾方程来判定,还可以从一个向量可否由一向量组线性表出来判定;当方程个数和未知量个数相等时,可以利用系数行列式是否为零来判定非齐次线性方程组的唯一解情况...
席南华院士:数学的意义
那在这个时候,对这个方程来讲它就有很多内在的结构,包括系数矩阵的秩,增广矩阵的秩等等,这个秩就反映这个方程可解不可解。还有你做消元法的时候,你发现是对它们系数作些运算,这里面产生向量空间,方程的关系实际就是向量之间的线性组合、线性关系、相关无关等等。还有就是矩阵,你抓住了线性方程以及相关的概念之后呢...