从自然数1到虚数i,数字系统的扩展
但如何统一表达这种情况呢,于是负数就出现了,自此数字从自然数扩大到整数集(正整数,0,负整数)。▲图片来自网络而除法呢,以前我们要求大数除以小数,如果不能整除就用余数表示,那怎么统一表示小数除以大数的情况呢?还有余数怎么办?有人说我们可以把两个数直接写下来,比如a/b表示不就行了,嗯,这就是分数。但分数...
博科测试创业板IPO:至少88项财务数据规律性变化,会计报表整体可靠...
从上表可见,发行人的人均年产值约为143.38万元/年,且上表中的各年人均年产值取整数,分别约为143、144、142,明显出现如上文所述的连续自然数但不依次出现的规律性异常。我们以发可比公司2023年度相关数据为比较对象,联测科技(30.090,-2.28,-7.04%)2023年度实现营业收入49,510.63万元,2023年末员工人数为456人,华依...
席南华:基础数学的一些过去和现状
具体说来就是:如果两个正整数a和m互素,那么算术数列a+m,a+2m,a+3m,…,a+km,…里有无穷多个素数。后来阿廷对数域的有限扩张域的伽罗瓦群的表示,类似地也定义了一类L级数并解析延拓得到一个L函数,现称为阿廷L函数。利用这些L函数,他证明了交换类域论里面很有名的阿廷互反律。20世纪...
有理数和无理数到底哪个多?
这是自然数、整数、有理数和实数的关系。但你可能被这张图误导了。事实上,它们的对比关系是这样的,因为无理数比有理数多得多。有理数是整数与分数的统称,当然包括有限小数及循环小数,因为他们都能化为分数的形式。而无理数则是无限不循环小数,比如圆周率π和自然对数的底e。得出这个结论的是一位驰骋在...
开拓数论一个崭新的领域
所以负数整数、正整数和零都属于自然数的范畴。古老的数论其实是限定在“正整数”的范围里的,也就1、2、3……∞的自然数范围内。我们可以叫它“正整数的规律问题”,当然也就是“自然数的规律”。高大上的名字就是叫“数论”。而“数论”的重要性不用我多讲了,它是自然数最基础的东西,就是数学大厦的地基。
解析数论大牛获邵逸夫奖,陶哲轩:他的课好难
其中指出,除了0和1之外的任何自然数都是素数的乘积,并且素数有无穷多个(www.e993.com)2024年11月26日。研究素数的分布是数论的一个核心主题。科学家不断寻找一个多项式函数f(x),使得在无穷多个整数x上,f(x)的值都是素数。根据欧几里得定理,f(x)=x就是这样的一种函数。进一步扩展这个问题,可以要求f(x)在无穷多个整数x上是殆素数(al...
数学必知必会:算术中的数
零(0):代表没有任何数量。自然数(N):用于计数的数字,包括0和所有正整数。整数(Z):包括正整数、负整数和零。小数:表示整数的一部分,用于表达更精细的值。分数:表示整数的部分或比例,由分子和分母组成。数学术语及其对应的英文:算术-Arithmetic...
3的三个整数立方和有多少个解?全球40万台计算机助力,MIT研究登上...
1957年,英国数学家莫德尔(LouisMordell)提出一个问题:哪些正整数可以写成三个立方数之和?(这三个数可正、可负,也可以等于0。)这就是著名的「三立方数和问题」。1992年,英国牛津大学的罗杰·西斯–布朗提出了一个猜想:除了9n±4型自然数外,所有自然数都可以用无穷多种不同方式写成三个...
42,人类破解宇宙生命终极答案,竟是3个整数立方和
这意味着100以内的自然数的立方和的整数解全部找到!1000以内还没找到解的整数只剩下:114,165,390,579,627,633,732,906,921和975。100以内三立方和的非零解全表最后,附上100以内三立方和的非零解全表(多种写法选取其中一个):1=(-1)??+1??+1??...
这种无理数中的无理数,让数学家直呼“根本停不下来”
比如整数就是正整数、零加负整数。有理数是能够表示成两个整数之比的数,其中包括整数、有限小数和无限循环小数。如果这个比的小数位永远除不尽且不重复,那它就是无理数。接着有理数和无理数共同构成实数,实数和虚数又组成复数。其中,对于有理数,今天我们一致认为是生活在公元前五世纪左右的希帕索斯发现的(...