美国高中女生因数学竞赛,发现勾股定理新证明,论文已发《美国数学...
平面上的直角三角形的两条直角边的长度(较短直角边为勾长、较长直角边为股长)的平方和等于斜边长(弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理可考的严谨数学证明,起源于欧几里得《几何原本》中卷一的命题47。如今,已经有了...
为什么要讲方程?走进不一样的数学
“直角三角形中,两条直角边长度的平方之和,等于斜边长度的平方。a2+b2=c2”这是连小学生都知道的勾股定律,又叫毕达哥拉斯定理。它告诉我们什么?直角三角形的三个边之间有什么关系。它为什么重要?提供了几何和代数之间的重要联系,使我们能够根据坐标计算距离。它也催生出了三角学。它带来了什么?测绘、...
陶哲轩推荐:2高中生发现勾股定理新证明,论文已发《美国数学月刊》
等腰直角三角形中,两个直角边相等,这种对称性简化了许多计算。这种特殊三角形的边长关系,直接得出边长满足勾股定理:因此,对于等腰直角三角形,证明过程变得更加简洁,因为两边的平方和直接等于斜边的平方。接下来,就到了关键的证明部分。五至十个勾股定理新证明为了便于阅读和理解,这部分我们将直接放上证明的原文内...
被数学选中的人:现代概率论之父柯尔莫哥洛夫
举例来说,古希腊的数学虽然在实际应用方面不及古巴比伦的数学,但在数学的理论层面,古希腊则将古巴比伦远远甩在身后。柯尔莫哥洛夫对“质数有无限多个”“等腰直角三角形的斜边不能用直角边的整数倍表示”等发现给予了最高的赞美之词。接下来,他详细叙述了注重实用性的古巴比伦数学同理想主义的古希腊数学经由中世...
初中数学三条难垮的深沟——一个初三男生的总结
∴△PEQ为等腰直角三角形,PE=EQ=3/5(等腰直角三角形斜边给了,直角边直接出)在☉O中∵OP=1,PE=3/5,PE⊥x轴∴OE=4/5(勾股定理,易如反掌)则此时xQ=OE-EQ(舍,太小)或OE+EQ即xQMax=7/5至于最小值,在负半轴用相同方法推一遍,得到最小值-7/5...
100年前,你能考上北大么?_澎湃号·湃客_澎湃新闻-The Paper
2.直角三角形内切圆之直径与斜边之和等于他二边之和??(以上几何)北京大学1917年预科入学试题(数学·乙部)1.试分ab(x2-y2)+xy(a2-b2)为因数??2.有二位数字之数,其数等于各位数字之和之五倍;又此数加9,则此数数字之顺序颠倒??求此数??(以上代数)...
一道中考数学题,拆解之后很容易48|垂线|直角|斜边|三角形|勾股...
1、见到直角,见到中点,必连中点。连接CE,在rt△ACD中,E是斜边中点,所以AE=CE=DE。△CDE是等腰三角形。2、题目告诉你BE=BC,所以△BCE是等腰三角形。根据上一步,两个等腰三角形,有一个底角相等,可以推出△BCE∽△ECD。可以推出对应边的比例关系,即CE∶CD=BC∶CE,∴CE??=CD×BC。设BD=x,CE??=2...
视频:四年级下册数学第五单元《直角三角形的三边关系》
任意一条直角边都比斜边短。怎么样?没想到吧?我也没想到。其实,这个内容很简单,也很容易混淆。常考内容:1、写出直角三角形三条边的名称。2、判断关于直角三角形直角边和斜边关系的说法是否正确:(1)直角三角形的两条直角边的和大于斜边。(√)(2)直角三角形的斜边与任意一条直角边的差小于另一条直...
斜边相等的两个直角三角形拼成四边形,如何求对角线长?
如图,在等腰直角三角形ABC中,∠BAC=90°,以BC为斜边在BC右侧作RT△BCD,∠BDC=90°,连接AD.若AB=5√2,CD=8,则AD=___.二、分析易求得AC=5√2,BC=10,BD=6,即四边形的四条边和一条对角线都已知,求另一条对角线的长.如果你听说过“托勒密定理”,这道题可以秒解;如果你只知道四点共圆,这道...
2015年天津三支一扶考试行测备考:三角形的三边关系
在直角三角形中,两条直角边的平方和等于斜边的平方,即a2+b2=c2(勾股定理)。直角三角形斜边上的中线等于斜边的一半。注:三角形三边关系,由于直角三角形的三边关系最为特殊,所以是考察的重点,所以考生需特别留意直角三角形,特别是直角三角形的勾股定理的一些特别的勾股值需要特别的牢记,例如:3,4,5;5,12,13...