为什么要讲方程?走进不一样的数学
我们在现实生活中遇到的许多三角形都不是直角三角形,因此方程的直接应用似乎有限。但是,任何三角形都可以分割成两个直角三角形,而任何多边形都可以分割成若干三角形。因此,直角三角形是关键:它们证明了三角形的形状与其边的长度之间存在有用的关系。从这一见解中发展出来的学科是三角学——“三角形的测量”。直角三...
【高中数学】立体几何公式总结大全|向量|科学|定理|射影|几何体...
1.找角,利用定义准确找到空间角;2.证角,证明所找角是所求角;3.计算,转化到三角形中计算所求角.利用向量法求空间角的步骤:1.建立空间直角坐标系,建立适当的空间直角坐标系.当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关...
斜边相等的两个直角三角形拼成四边形,如何求对角线长?
对于本题,则有AD·BC=AB·CD+AC·BD即10AD=6×5√2+8×5√2=70√2∴AD=7√2四、小结1、求线段长,勾股或相似;2、对角互补,四点共圆;3、遇45°,构造等腰直角三角形;4、托勒密定理另外,由方法二还可以得到一个结论:已知两边和一角,则任意三角形都可解.(边边角图形未确定时要分两种情...
除了直角三角形和斜三角形,还有另一种三角形?
三角形按角分有直角三角形,锐角三角形,钝角三角形。除了咱们课本中学过的这些,你还知道哪些呢?相信你绝对没有听过彭罗斯三角形。彭罗斯三角形最早是由瑞典艺术家奥斯卡·罗特斯维尔德在1934年制作。英国数学家罗杰·彭罗斯及其父亲遗传学家列昂尼德·彭罗斯设计并推广此图案,并在1958年2月份的《英国心理学月刊》中发表...
走进奇妙的三角形世界
生1:我将3根小棒连起来拼成了一个三角形。生2:我在本子上画了3条连起来的线段,就画好三角形了。师:不管拼一拼还是画一画,我们都用到了什么?生(齐答):3条线段。师:那么大家观察一下,本来每条线段有2个端点,3条线段应该有6个端点,但为什么大家创造的三角形只有3个端点了呢?
五年级数学上册期中考试知识点,看了考试一定好!
1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴(www.e993.com)2024年11月8日。两图形重合时互相重合的点叫做对应点,也叫对称点。2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。3.轴对称图形具有对称性。
蔡天新:数学与人类文明(一)
一条直线只是一段拉紧了的绳子,来自希腊文的英文Hypotenuse(斜边、弦)的原意就是“拉紧”。我们可以设想,这是将一个直角的两臂拉紧后的联线,而arms(手臂)也就成了两条直角边。如此看来,三角形的概念是人们通过对自己身体的观察得到的。巧合的是,在古代中国也是这样,勾、股作为小腿和大腿同时也是直角三角形中较...
初中数学:与直角三角形相关的辅助线作法(实用技巧归纳)
方法:碰到某条线段长是直角三角形斜边的一半,直接添加辅助线:斜边的中线。解:由题可知AF⊥AD,则△ADE为直角三角形连接A与DE的中点O,易知OA=OE=OD=AB设∠ADO=∠1那么∠AOB=∠ABO=2∠1∠DBC=∠ADO=∠1∴∠ABC=3∠1=75°∴∠1=25°...
三角形全等的判定+性质+辅助线技巧都在这里了!
(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。三角形全等的证明中包含两个要素:边和...
小学数学:所有图形与几何的知识合集
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。