【青鸟飞扬教育】单调有界定理
定义:单调有界数列必有极限.在证明数列收敛时,我们只需证明两个条件:数列单调+数列有界.具体来说就是证:单调递增(减)数列有上(下)界.在利用该定理进行证明之前,我们先证明该定理:证明:对于数列${x_n}$,由于$x_n$有界,由确界原理可知,${x_n}$有上确界不妨设${x_n}$是单调递增的,设$sup{x...
数学爱好者必看:5个有趣的数学事实大揭秘!
实数系的一个基本属性是它的完备性,即每一个有界的数列都有极限。而循环小数0.9999...可以被看作是一个极限过程:定义序列:考虑序列s??=0.9+0.09+0.009+...+0.000...9序列的极限:我们可以计算这个序列的极限。由于这是一个等比数列的部分和,极限是:其中,a是首项0.9,r是公比...
上下求索之解码数学中著名的分形——曼德尔布罗特集合(下)
主心形中的点对应于从起始值为零迭代时收敛为单个数字的函数。其他叶瓣中的点对应于最终在特定数量的不同值之间振荡的函数。例如,主心形顶部的最大叶瓣代表在三个值之间振荡的函数。然而,对于精心选择的点,函数可能会产生保持有界但从不振荡的数列——它们不断在新的、不同的值之间跳跃。但是,如果MLC是真的,...
期末来了:《函数与极限》应知应会题型、求解思路与典型练习 (二)
可以判定级数收敛,即收敛,等价于数列收敛.然后对递推式两端取极限得到极限值.(4)拉链定理.如果以上方法失败,而数列又不具有单调性,可以尝试改写为奇数项构成的数列与偶数项构成的数列,并基于原数列的递推式得到各自的递推关系式,然后分别基于以上某个方法,尤其是单调有界原理来验证两个数列极限的存在性与求...
数列极限专题:夹逼定理与单调有界原理求数列极限实例分析
夹逼准则与单调有界原理是直接判定数列极限是否存在与计算极限的基本方法,它们包含的内容非常简单:定理:(夹逼定理)设数列,收敛到相同极限值,且存在正整数,当时,有,则数列也收敛,并且极限值也等于.定理:(单调有界原理)设数列在某项之后单调增加且有上界,则数列存在极限....
数列极限重点中的重点:柯西收敛原理
1、从任意数列中可以选出一个单调子列(www.e993.com)2024年11月16日。2、任何有界数列必可选出一个收敛子列。如果证明从中选出的单调子列的极限和数列通项极限相等那么就可以证明该数列有极限,首先令这个选出来的子列的极限是a,然后再去证明也是数列通项的极限即可,与必要性证明类似,教材中有详细步骤,这里只提供思想参考。
考研数学:如何利用函数单调性证明数列单调性
一、利用函数的单调性证明数列的单调性的方法二、典型题型分析从上面的分析和例题我们看到,利用函数的单调性来证明数列的单调性,主要是利用函数的单调增加性,而不是函数的单调减少性,当要证明数列收敛时,一般是结合单调有界准则,当然这只是方法之一,除此之外还有其它一些证明数列收敛的方法,如:夹逼准则、数学归纳...
数列极限的定义简单分析(供初学者参考)
当我们用极限定义来证明极限存在的时候,只需要证明出N的存在性就可以。也就是说只要有这么个N能使后面的无穷多项都落在ε邻域之内即可。不用找到最小的N,一般来讲怎么方便怎么来。收敛数列的性质1、数列的极限唯一2、收敛数列一定有界3、收敛数列的每一个子列都收敛同一个极限...
2024考研数学复习高数定理:函数与极限
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数...
武汉纺织大学2024 年硕士研究生入学考试自命题大纲
一,函数,极限,连续考试内容函数的概念及表示法函数的有界性,单调性,周期性和奇偶性复合函数,反函数,分段函数和隐函数基本初等函数的性质及其图形数列极限与函数极限的概念无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的单调有界准则和夹逼准则两个重要极限函数连续的概念函数...