哈密顿:一个随时有人书写的伟大名字|贤说八道
2022年1月25日 - 百家号
构造三元数和四元数的过程中,放弃乘法的交换律是关键一步,确实需要勇气和胆识。满足xy≠yx,x(yz)≠(xy)z这样乘法的代数,内容可丰富了。或许是在同爱森斯坦讨论的时候,哈密顿才决定放弃乘法的交换律的。哈密顿寻找三重数动机本来就是为了描述三维转动的,而三维转动的特征就是非交换性。四元数是q=a+xi+y...
详情
最美的公式:你也能懂的麦克斯韦方程组(微分篇)
2019年8月31日 - 网易
性质1:点乘满足交换律,也就是说OA·OB=OB·OA。这个很明显,因为根据定义,前者的结果是|OA||OB|Cosθ,后者的结果是|OB||OA|Cosθ,它们明显是相等的。性质2:点乘满足分配律,也就是说OA·(OB+OC)=OA·OB+OA·OC。这个稍微复杂一点,我这里就不作证明了,当做习题留给大家~性质3:如果两个矢量相互垂直,...
详情