还不知道高数都有哪些证明题 ? 高质量数学竞赛等你参加!
函数的单调性、零点定理、罗尔定理推论证明方法通过求导分析函数单调性,根据函数极值进而证明方程根的个数。由罗尔定理推论证明方程至多n个根,再结合零点定理证明方程至少n个根,由此证明方程有且只有n个根。04不等式证明学习要求掌握基本初等函数的性质;掌握不定积分的基本公式,掌握不定积分和定积分的性质及...
知识点&计算思路&解题技巧,高等数学细节全梳理!|导数|定理|微分|...
中值定理证明题,不等式证明,我觉得这部分还是有迹可循的,大家多做题多总结方法,记住罗尔,费马,拉格朗日,最值,介值定理,而且出题一般不会在创造辅助函数上难为。以及一些常用的基本不等式,比如两个数相加的绝对值比各自绝对值相加小这种放缩创造不等式。03积分计算、几何应用、物理应用、积分等式不等式证明题不定...
2021考研高数核心知识点:函数极限连续
了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
2018年成人高考专升本高数一考试重点(一)
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
考研数学:高数复习易丢分的10个出错点
10.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。总的来说,高数其实不算太难,当你对它产生一种畏惧的时候,你就很难把它学好了。考试要的也是心态,有些题,本来就不属于自己的能力范围的,就直接放弃,否则一直缠着只会是浪费时间,其它题没时间做,这道题又没做出来。
为什么高数教材中不证明这个定理, 真的那么难证明吗!
闭区间上的连续函数具有:有界性定理、最值定理、介值定理和一致连续性定理(www.e993.com)2024年11月25日。有界定理和最值定理的证明,老黄已经在前面的作品中分享了。这次老黄要分享的是介值性定理的证明。介值定理是《老黄学高数》系列视频第126讲分享的内容。当时老黄只分享了定理的内容,并没有进行证明。在学习实数的完备性六大基本定理之后...
2016考研高数:重视函数极限与连续学习
关于函数连续,须知,按考研大纲中规定,考生要理解函数连续性的概念(含左连续和又连续),会判断函数间断点的类型,也要求要了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质:有界性、最大值和最小值定理、介值定理以及零点定理。这四个性质是第一章节所学的几个重要的性质,会用到以后的关于中值问题...
2023年山东专升本考试大纲解析
高数二大纲变化1.洛必达法则的后3种形式2.简单有理函数的不定积分求法3.旋转体体积的求法4.复合函数的二阶偏导数的求法5.二阶常系数齐次线性微分方程的解法高数三大纲变化1.介值定理和零点定理解决简单问题的应用2.高阶导数的概念
2016年考研数学备考复习全程规划(二)
那什么叫方法总结到位了呢?拿到一道此类型的题目,一般可以从结论出发进行思考,看待证的式子是含一个中值还是两个。若是一个,再看含不含导数,若含导数,优先考虑罗尔定理,否则考虑闭区间上连续函数的性质(主要是两个定理——介值定理和零点存在定理);若待证的式子含两个中值,则考虑拉格朗日定理和柯西定理。
考研倒计时最后一个月 高等数学必看知识点
3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)...