专题讲座05:一元函数的导数与微分问题求解注意事项及典型题分析
函数在分界点处左、右两侧表达式不同的时候,考虑左右导数:导数存在的充要条件是左、右导数存在且相等。(3)绝对值函数的可导性的讨论.绝对值函数可导性的讨论与导数的计算,一般改写成分段函数讨论。(4)当问题中没有可导的条件,而解题中又需要用到导数,或微分的结论的时候,考虑用导数定义,判定函数的可导性...
专题讲座09:多元函数几个基本概念及相互关系的讨论与偏导数的计算
这部分重点探讨一下相关的基本概念和相关的计算方法,主要包括:二重极限、二元函数的连续性、偏导数;全微分;方向导数;梯度和多元函数导数的计算方法。其中极限是这些概念的基础,二元函数连续性、可微性的研究都是以二重极限为基础的,而累次极限、偏导数以及方向导数其实就是一元函数的极限问题;对于偏导数的计算,具体显...
知识点&计算思路&解题技巧,高等数学细节全梳理!
计算包括:一大坨的基本求导公式,复合函数求导,隐函数,反函数,分段函数,对数,幂指函数,参数方程,高阶导数的求导。其中最比较难的是高阶导数的计算,这里给大家做一个提醒:如果说,题目问我们的是f(x)的n阶导数,那就只能选择找规律法,或者拆成两项乘积用莱布尼茨求导法则,如果问我们的是f(a),也就是函数在某一...
2024考研396经综(经济类联考综合)数学试卷选择题分析
选择题8:考查变限积分函数的极值点和拐点,本题稍有计算量,但只要牢记极值点和拐点的判定方法,即可顺利解题;选择题9:考查抽象复合函数的求导,按照求导法则计算即可;选择题10:考查旋转体体积,本题直接带入截面法公式即可;选择题11:考查不等式判断,本题较为抽象,难度较大;选择题12:考查反常积分判断敛散性及...
2016考研数学分段函数求导的两种解题方法
分段函数求导是考研数学中经常会遇到的问题,方法运用得当,可以巧妙地解决问题。下面老师对分段函数求导的两种重要方法进行细致讲解,以帮助广大考生复习备考。从上面的例题中,可以看出,方法二在处理分段函数求导问题上,明显更简便一些。具体的方法选用,要具体的分析对应的题目。同学们可以做一些这一类的题目,进行巩固练习...
不定积分的求法-不定积分常用方法小结
(一)第一类换元法设f(u)f(u)有原函数,u=φ(x)u=\varphi(x)可导,则有∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x)\int_{}^{}f[\varphi(x)]\varphi^{}(x)dx=[\int_{}^{}f(u)du]_{u=\varphi(x)},第一类换元法主要技巧在于凑微分,不仅要熟悉常见函数的导数,还要很强的观...
第10讲:《偏导数及其基本计算方法》内容小结、课件与典型例题与练习
注1对于分段函数的导函数或高阶导数在分界点的连续性和可导性的讨论,以及导数值的计算,一般都要先计算得到该函数的导函数以后,然后再使用定义的方法对分界点的连续性和可导性进行判定,或完成相关的计算。对于初等多元函数导函数的计算,在定义区域内应用求导法则直接求导函数,对于间断点处使用定义法求导数值和判定...
大学高等数学:第二章第六讲高阶导数及n阶导数的求法
大家好,我们上节课学习了关于三种分段函数求导法,回顾一下,分别是按定义求分界点处的导数或左右导数、按求导法则分别求分段函数在分界点处的左右导数、分界点是连续点时,求导函数在分界点处的极限值这三种方法,有效的掌握这三种方法分段函数求导基本都可以解决了。
2016考研高数常考题型:导数微分及求函数导数
题型七、显函数、隐函数、由参数方程确定的函数的求导问题。常用的求函数导数的方法有取对数法。题型八、分段函数的可导性判断。这种题型一般情况下,题目中会有未知的参数,通过对于分段函数的在间断点的可导性判断,从而确定题目中未知参数的值。我们判断分段函数间断点的可导性时候,一般用定义来证明。
高考数学:48条秒杀型公式与方法,看过都说好
(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。