学科数学考研考试要求
你需要熟悉各种函数的表示方式,并能够根据实际问题建立相应的函数关系。这将有助于你在解决复杂问题时,快速找到切入点。2.函数的性质了解函数的有界性、单调性、周期性和奇偶性,对于分析函数的行为非常重要。掌握这些性质可以帮助你预测函数在不同区间的表现,增强你的解题能力。??3.复合函数与分段函数在学习...
干货丨记住这些数学公式与方法,考试次次130+!
1>复合函数奇偶性:内偶则偶,内奇同外2>复合函数单调性:同增异减3>重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。8,常用数列bn=n...
高考数学必背50条秒杀型公式和方法,请收好!
(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1)<f(x2)等价于绝对值x1-(a+bp=""<=""2)<绝对值x2-(a+b)="">④函数对称性:(1)若f(x)满足f(a+x)+f(b-x)=c则...
高考数学:48条秒杀型公式与方法,看过都说好
(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。8.常用数列bn...
高考前回顾和总结,吃透函数的奇偶性,为高分做好准备
奇、偶函数的有关性质:1、定义域关于原点对称,这是函数具有奇偶性的必要不充分条件;2、奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反之亦然;3、若奇函数f(x)在x=0处有定义,则f(0)=0;4、利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y轴...
历年高考数学易错点大汇总 想少走弯路的看过来
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等(www.e993.com)2024年11月11日。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
2016年高考数学备考:容易混淆的知识点总结
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
高中数学基础知识点大全
1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤...
第03讲:函数的概念与基本性质内容小结、课件与典型例题与练习
(1)证明、判定可导函数单调性的直接方法是导数的符号;(2)证明、判定非可导函数单调性的是定义法,即任取x12,判定f(x1),f(x2)的大小关系,一般采用相减或者相除的方法来判定.区间上严格单调函数为一一映射,函数在严格单调区间上存在反函数;而不单调的函数也可能有单值反函数!如函数...