证明三角形内角和:还真得初中生来,小学生的方式不叫证明
——用严格的数学推理证明。你要设任意的一个三角形,它有三个角:角1,角2,角3想办法让角1+角2+角3=180度。这才是证明。三、数学教育初中生要经过大量的练习,学习证明和解题的逻辑步骤——这才是初中数学教育的重点。上课的时候,数学老师会给初中生讲:要设任意的xxx要写因为、所以要保证逻...
这个“三角形”的内角和居然是360度?上海市静安区用一首校家社...
在教育里,校家社联合将形成稳定的“三角”,当“三角”齐全时,孩子收获的便是360度全方位的成长。2023年1月,教育部等十三部门联合印发的《关于健全学校家庭社会协同育人机制的意见》中提出,要积极构建学校家庭社会协同育人新格局,着力培养德智体美劳全面发展的社会主义建设者和接班人。那么,校家社的“协奏曲”究竟该...
数学悖论系列之二(平行公设悖论)|黎曼|高斯|定理|流形|几何学...
例如,像这样的假设对于证明欧几里得最著名的定理之一是必要的,即三角形的内角和是180度。数学家们发现了更容易表述第5个假设的替代形式,比如“对于不在给定直线上的任何给定点,恰好有一条直线通过该点,但不与给定直线相交”。(二)试图证明平行公设的2000多年探索如果将欧几里得第五公设与其他四条公设进行比较,...
陈越骅、杨有栋:学术写作教育的三个导向及其哲学思考
如“三角形内角和为180度”作为欧式几何的定理长期被人们认为是理所当然的,但是一旦改变理论视野,人们发现其适用的条件是平直空间,在超出此范围的黎曼空间或罗巴契夫斯基空间里,这个定理就不再成立。通过写作构筑论证就是向现存的知识体系提供可检验的经验性的新事实,或者理论性的新推断,从而构造新的结论、新的问题、...
读了这10本书,5岁儿子竟意外掌握了五年级数学知识点
应该是当时五年级的哥哥在捣鼓什么三角形内角和是180°吧,已经对角度有一定基础的弟弟产生了极大的兴趣,便问起我“为什么三角形的内角和是180°?”我犹豫后还是给他做了一个小实验,协助他证明三角形的内角和是180°。剪下任意三角形的3个角,可以拼成一条直线180°。这是2021年8月22日拍的。
五种方法,直观表明三角形的内角和为啥是180度
五种方法,直观表明三角形的内角和为啥是180度2023年08月07日15:11史小煮语音播报缩小字体放大字体微博微信分享0五种方法,直观表明三角形的内角和为啥是180度相关新闻加载中头条号入驻史小煮趣说不胡说,解读潮历史中国古代的五大关隘,哪个是你心里的天下第一关?郯庐地震带最近很活跃?用...
为什么三角形三个内角和为180度
0:00/0:00速度洗脑循环Error:Hlsisnotsupported.视频加载失败物镜世界332粉丝各种问题评论教育资讯03:03安全骑行,守护生命——从三毛子不幸事件谈起的摩托车安全02:57安全驾驶,文明出行——从“路虎女司机”事件说起03:01海底大冒险:中国钻井如何一天“啃”下2000米?
三角形内角和不等于180度?复旦教授抖音导读科普名著《科学与假设》
金晓峰还举例,三角形内角和等于180度是大家很熟悉的定理,实际上这只适用于欧几里得几何。如果在一个球面上,三个内角和就会大于180度,在双曲面中又会小于180度。他表示,像这样的知识脑洞,在《科学与假设》一书中还有很多。节目还设有讨论环节,由复旦大学国际关系与公共事务学院副教授、主持人蒋昌建主持。复旦大学...
一个三角形内角和是180度,所以所有三角形内角和都是180度,这对吗?
这种方法只能证明代数问题吗?显然不是,它还可以用于大量的几何问题证明。我们用一个最简单的例子:证明三角形内角和等于180度来说明。首先,我们要将几何问题代数化,方法是使用笛卡尔创立的解析几何。笛卡尔就是那个传说和瑞典公主谈恋爱的老年人。实际上笛卡尔并没有和瑞典公主谈恋爱,而是给瑞典女王当私人教师。女王要求...
几何画板验证三角形的内角和的具体操作方法
几何画板验证三角形的内角和的具体操作方法新建一个几何画板文件。绘制出一个三角形ABC,将线段设置为虚线。构造线段AB和AC的中点D和E。过点A、D、E作线段BC的垂线,垂足分别为F、G、H,隐藏垂线,将线段DG、GH、HE、ED设置为实线。任意绘制点I、J、K,绘制线段ID、IE、JD、JG、KE、KH。