介绍一种基于道路分类特性的超快速车道检测算法
具体来说,将车道检测过程视为使用全局特征锚驱动的序数分类问题。首先,在一系列混合(行和列)锚点上表示具有稀疏坐标的车道。接着,在锚驱动表示的帮助下,将车道检测任务重新表述为序数分类问题以获取车道坐标,通过锚驱动表示显着降低了计算成本。利用序数分类公式的大感受野特性,解决了高速场景和极端场景的车道线问题。
难以破解的AI“黑匣子”
相比之下,其他AI算法,如决策树或线性回归(常用于医学和经济等领域),则更具可解释性。它们的决策过程易于理解和可视化。工程师可顺着决策树的分支,清晰地看到特定结果是如何得出的。这种清晰性至关重要,因为它为AI注入了透明度,并向算法的使用者提供了安全保障。值得注意的是,欧盟《人工智能法案》强调了拥有透明且...
决策树与随机森林算法:可视化的决策过程
生成决策树包括特征选择、决策树生成、决策树剪枝等三个步骤。在特征选择和决策树生成阶段,最重要的任务就是通过信息熵来筛选出更重要的特征,并把更重要的特征放到更靠前的节点上去。决策树会评估每一个特征划分后系统的“信息熵指标”,“信息熵指标”最低的特征越靠近根节点,这样一来,决策树的复杂度和计算时间...
《Nature》高分子材料成功独占鳌头,成为引爆学术界的核弹!
3.常见的机器学习算法,如神经网络、决策树、支持向量机等。2.机器学习在结构仿真中的应用概述1.机器学习在结构仿真中的应用背景和意义。2.应用领域介绍,包括结构设计优化、结构健康监测、材料性能预测等。3.机器学习在结构仿真中应用的挑战和解决方案。3.机器学习在结构设计优化中的应用1.基于机...
机器学习在复合材料领域到底能怎么用?【建议收藏】
5.前沿技术探索:介绍了XGBoost和LightGBM等先进的机器学习算法,并探讨了它们的模型解释性技术,使学员能够理解并应用这些前沿技术。6.神经网络与深度学习基础:提供了神经网络的基础知识,包括前向传播、损失函数和反向传播算法,以及使用PyTorch构建和训练神经网络的实践。
从“选择困难症”说起:如何让决策树替你做选择?
决定何时停止分裂是防止过拟合、提高模型泛化能力的关键步骤(www.e993.com)2024年11月1日。过早停止可能导致欠拟合,而过迟停止则可能导致过拟合,因此需要在两者之间找到平衡。3决策树在量化投资上的应用量化投资依赖大量的、数据和复杂的模型,而决策树算法不仅能够将数据转化为易于理解的层次化结构,还能捕捉因子与股票涨跌的非线性关系。
从感知、规划来看特斯拉 FSD自动驾驶为何全球遥遥领先
1.算法端:-感知模块:采用HydraNets架构,整合多个视觉识别任务到单一网络,通过BEV(Bird'sEyeView)+Transformer技术,实现对车辆周围环境的感知。-规划模块:引入基于神经网络的规划模块和蒙特卡洛树搜索,提高自动驾驶决策质量。2.算力端:-特斯拉构建了Dojo超级计算机系统,以处理自动驾驶所需的海量数据,减...
R语言基于决策树的银行信贷风险预警模型
基于决策树的分类模型有如下几个特点:(1)决策树方法结构简单,,便于理解;(2)决策树模型效率高,对训练集数据量较大的情况较为适合;(3)树方法通常不需要接受训练集数据外的知识;(4)决策树方法具有较高的分类精确度。预警方案设计数据在进行操作的过程中,我们一共分了四步,分别是数据分析和分离数据集,建立训练...
【量化专题】机器学习模型理论—决策树的剪枝
后剪枝是人们普遍关注的决策树剪枝策略,与预剪枝恰好相反,后剪枝的执行步骤是先构造完成完整的决策树,再通过某些条件遍历树进行剪枝,其主要思路是通过删除节点的分支并用叶节点替换,剪去完全成长的树的子树。目前主要应用的后剪枝方法有四种:悲观错误剪枝(PessimisticErrorPruning,PEP),最小错误剪枝(MinimumError...
我国数据分类分级研究进展与企业实施路径建议
30篇文献样本对数据分类分级技术和工具进行了研究,本文发现,其主要聚焦在电力、医疗和政府等领域,运用卷积神经网络、决策树算法、支持向量机算法和贝叶斯算法,实现文本、图像数据的高精度、高效率自动分类和分类性能优化改进。(1)基于神经网络算法。王道元等人提出一种基于改进粒子群算法和卷积神经网络的智能风险...