高等数学极限与连续:学习要求、要点,内容小结、课件、典型题与...
(1)四则运算法则中参与运算的函数的极限必须存在,分母中函数极限不为零.常常应用初等变形方法消去分母为无穷小的因子.(2)复合函数求极限法则,必须满足当时,当时,且时;或者在处连续.2、应用函数(或数列)极限存在的充要条件:求分段函数的极限则需分别计算左、右极限来判断极限的存在性与求极限...
考研数学二的考试内容
考研数学二的考试内容1、高等数学(函数、极限、连续)函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数;函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和……1考研数学二的考试内容1、高等数学(...
专题讲座09:多元函数几个基本概念及相互关系的讨论与偏导数的计算
如果讨论的二元函数是初等函数,则由于它们的偏导数仍然是初等函数,所以在定义区域内偏导函数仍然是连续的。所以对于偏导函数连续性的讨论,也是分段函数的分段点位置处连续性的讨论。值得注意的是,如果高阶偏导数函数连续,则关于相同变量求偏导数是与求导次序无关的,也就是关于相同的多个变量的混合偏导数相等。要判断...
考研数学科目内容
考研数学科目内容1、函数、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数。2、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和……1考研数学科目内容1、函数、连续考试...
专题讲座05:一元函数的导数与微分问题求解注意事项及典型题分析
一元函数可导性与可微性是等价,且函数的微分就等于函数的导数乘以自变量的微分因此函数可微性的判定和微分的计算,完全可以通过判定函数的可导性,计算函数的导数来确定和得到。(2)分段函数分界点处可导性的判定与导数的计算函数在分界点处左、右两侧表达式不同的时候,考虑左右导数:导数存在的充要条件是左、右导数...
2023考研数学(二)大纲原文:高等数学部分
一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较...
高等数学重要知识点总结
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的...
专升本函授高等数学(一)考哪些内容?
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。(2)会求函数的间断点及确定其类型。(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
专升本考试公共基础课,四门科目考试要求来了!
一、函数、极限与连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。2.理解和掌握函数的有界性、单调性、周期性和奇偶性。3.了解分段函数和反函数的概念。4.掌握函数的四则运算与复合运算。5.理解和掌握基本初等函数的性质及其图形,了解初等函数的概念。
第11讲:《导数的概念与基本性质》内容小结、课件与典型例题与练习
如果已知函数f(x)在x=x0处可导,则导数值等于极限值;因为导数存在,所以极限存在,从而由导数的存在性,借助极限式变形可以用来求其他极限式的极限。如四、导数定义应用解题类型(1)抽象函数的导数的存在性和导函数的计算,分段函数分界点导数的存在性与导数的计算,一般使用导数的极限定义来判定与计算....