竞赛考研专题讲座10:多元函数微分法的几何应用、极值判定相关的...
对于多元函数的一阶偏导数,一般有几个变量就有几个,我们把由函数的所有变量的偏导数,按照变量的前后顺序排列构成的向量,也就是梯度,形象地称为多元函数的一阶导数;类似的方法,称由多元函数的所有的二阶偏导数构成的矩阵为多元函数的二阶导数,也称为黑塞矩阵。有了多元函数的一阶、二阶导数,也就容易推广一元...
专题讲座09:多元函数几个基本概念及相互关系的讨论与偏导数的计算
其中极限是这些概念的基础,二元函数连续性、可微性的研究都是以二重极限为基础的,而累次极限、偏导数以及方向导数其实就是一元函数的极限问题;对于偏导数的计算,具体显函数偏导数的计算其实就是一元函数求导问题;其余偏导数的计算问题则都可以归结为多元复合函数求导问题,思路、步骤都基本一致。一、二重极限二重极限...
吉林财经大学2025考研招生考试自命题科目考试大纲:707-数学分析
第8章多元函数微分学8.1多元函数的极限与连续8.2偏导数与全微分8.3多元复合函数的微分法8.4隐函数的微分法8.5多元函数的泰勒公式8.6方向导数和梯度8.7偏导数的应用第9章重积分9.1二重积分9.2三重积分第10章级数10.1常数项级数的概念与性质10.2正项级数10.3任意项级数10.4...
2025年杭州电子科技大学硕士研究生入学考试601数学分析考试大纲已...
考试内容:多元函数的极限与连续、全微分、(高阶)偏导数、方向导数、泰勒公式、隐函数求导及几何应用。考试要求:(1)掌握多元函数极限、偏导数、全微分、方向导数的概念及其求法;(2)掌握高阶偏导数的计算、简单多元函数泰勒公式的展开;(3)掌握多元函数的极值、条件极值的概念及其判别方法;(4)掌握隐函...
收藏备用!湖南省2024年专升本公共科目考试要求
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
湖南省教育考试院
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题(www.e993.com)2024年12月19日。
【备考参考】湖南省2024年专升本公共课考试大纲
3.了解函数连续(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系;会求函数的间断点并判断其类型;掌握连续函数的四则运算和复合运算;理解初等函数在其定义区间内的连续性,并会利用连续性求极限;掌握闭区间上连续函数的性质,并会应用这些性质解决相关问题。
2021考研数学:浅析多元函数可微、连续与偏导数存在的关系
多元函数微分学是高数学习中的重要内容,是微积分学在多元函数中的具体体现,多元函数的可微、连续与偏导数存在之间的关系是学生在学习中易模糊的概念和难以把握的重要知识点。尽管它与一元函数的微分学有许多共同点,但它们之间也存在一些差异,这些差异是由“多元”这一特殊性引起的。由于多元函数的性质较为复杂,本文将...
2021考研高数:多元函数的微分学怎么考察?
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题...
算法中的微积分:5大函数求导公式让你在面试中脱颖而出
要推导出函数f(x,y,z)=2+zcos(x)的梯度,需要构造一个矢量的偏导数:f/x,f/y和f/z,结果如下:需要注意,此处也需要利用公式进行等值转化,即2=exp(xyln(2))。总之,对于一个从映射到的三元函数f,其导数是一个从映射到的梯度f。从映射到(k>1)的一般式中,一个从映射到的多元函数的导...