数据分析中,哪些统计学是必须掌握的?认证CDA对从业有帮助吗?
生存分析用于分析预期寿命或事件发生前的时间,常用于医疗研究和可靠性工程。聚类分析一种无监督学习方法,用于将数据分组成相似的子集或“簇”。主成分分析(PCA)一种降维技术,用于减少数据集的维度,同时保留最重要的特征。假设检验的基本原则包括第一类错误和第二类错误的概念、功效分析、p值等。这些统计学...
K均值聚类算法
K均值聚类算法也叫K-means聚类算法,是一种无监督学习算法。二、基本原理假设有一个新开办的大学,即便还没有开设任何的社团,有不同兴趣爱好的同学们依然会不自觉的很快聚在一起,比如喜欢打篮球的、喜欢打乒乓球的、喜欢音乐的等等。这时候就可以顺势开设篮球社团、乒乓球社团、音乐社团,再有同学想加入社团的时...
我的AI产品经理转型之路
常见的监督学习算法包括线性回归、逻辑回归、支持向量机、K近邻、决策树和随机森林等。无监督学习:无监督学习是机器学习的一种方法,在没有标签数据的情况下从数据中发现模式和结构,它主要用于数据聚类和降维等任务。常见的无监督学习算法包括K均值聚类、层次聚类、DBSCAN、主成分分析(PCA)和t-SNE等。半监督学习:半...
8000字详解“聚类算法”,从理论实现到案例说明
常见的监督学习算法包括线性回归、决策树、支持向量机等。无监督学习算法无监督学习算法则需要在没有明确标签的情况下从数据中学习结构和模式。这类算法主要用于聚类、降维和关联规则挖掘等任务。比如,K均值聚类、主成分分析(PCA)和关联规则挖掘都是常见的无监督学习算法。如果对无监督学习的基本概念还不太清...
一口气学完回归算法、聚类算法、决策树、随机森林等十大算法
常见的聚类算法包括K-means和层次聚类。聚类算法在市场细分、客户分群等领域应用广泛,能够帮助企业更好地理解客户需求和市场趋势。三、决策树决策树是一种基于树形结构的分类算法,通过递归地将数据集划分成若干个子集,最终形成一棵树。决策树能够直观地展示决策过程,并且易于理解和实现。在应用上,决策树常用于信用...
【还不知道你就慢了!纯纯干货!数学建模竞赛最常用的4个算法!】
聚类算法算法介绍:K-means算法的基本思想是将数据集中的n个对象划分为K个聚类,使得每个对象到其所属聚类的中心(质心)的距离之和最小(www.e993.com)2024年11月19日。这里的距离通常采用欧氏距离来衡量。算法通过迭代的方式,不断优化聚类结果,直至满足预设的终止条件。基本思想:K-means算法的目标是最小化数据点与其所属簇中心之间的平方距离之...
数学建模竞赛前必须熟练的三十种模型算法!
拟合算法:matlab拟合工具箱、准确…插值算法:短期预测、完善补全数据、插值函数、拉格朗日插值法、三次样条插值法…评价类模型常用的评价模型:模糊综合评价法、层次分析法、聚类分析法、主成分分析评价法、灰色综合评价法、人工神经网络评价法等等。数学建模中,评价类模型是一类比较基础的数学模型之一,往往是对应生活...
数据化运营、精准营销10大常用模型
??应用:在电商领域,关联规则模型常用于商品推荐系统。通过分析用户购买历史中的商品组合关系,可以发现哪些商品经常被一起购买(如“啤酒与尿布”的经典案例),从而向用户推荐可能感兴趣的商品组合。10.协同过滤模型??定义:协同过滤是一种基于用户或物品的相似性的推荐算法。它通过分析用户或物品之间的相似度来...
你心目中TOP10的数模竞赛算法模型有哪些?
5????蚁群算法——用以寻找最优化路径的概率性算法,是一种模拟进化算法。3.评价模型模糊综合评价法、层次分析法、聚类分析法、主成分分析评价法、灰色综合评价法、人工神经网络评价法等等。应用领域:某区域水资源评价、水利工程项目风险评价、城市发展程度评价、足球教练评价、篮球队评价、水生态评价、大坝安全评...
算法人生(16):从“K均值 & C均值”看“为人处事之道”
K均值(K-means)和C均值(C-means,也称为模糊C均值,FuzzyC-Means,FCM)是两种常见的聚类算法,以下简单介绍下这两种方法,已经熟知的小伙伴可略过。K-means算法是一种无监督学习方法,它的目标是将数据集划分为K个不重叠的子集(簇),使得每个数据点到其所属簇中心(质心)的平方距离之和最小。这个算法假设簇是...