专题讲座09:多元函数几个基本概念及相互关系的讨论与偏导数的计算
另外,多元函数与一样函数一样,有闭区域上连续函数的相关结论,主要结论如下:三、二元函数偏导数与偏导函数的连续性对于具体的二元函数,由于通常讨论的二元函数一般都是初等多元函数,所以它们在定义区域内偏导数也都是存在的,并且在定义区域内的偏导数,可以直接使用一元函数求导的方法来计算,也就是对哪个变量求偏导...
2025年杭州电子科技大学硕士研究生入学考试601数学分析考试大纲已...
(1)理解连续、可导、可微等概念及其相互关系,理解导数的几何意义、函数极值点与极值、凸性、拐点等概念,会用导数研究函数的单调性与极值性,会用二阶导数研究函数的凸性与拐点;(2)掌握(高阶)导数、微分的四则运算与复合函数求导运算法则以及高阶导数的莱布尼兹公式,掌握左、右导数的概念以及分段函数求导方法,掌握...
知识点&计算思路&解题技巧,高等数学细节全梳理!
计算包括:一大坨的基本求导公式,复合函数求导,隐函数,反函数,分段函数,对数,幂指函数,参数方程,高阶导数的求导。其中最比较难的是高阶导数的计算,这里给大家做一个提醒:如果说,题目问我们的是f(x)的n阶导数,那就只能选择找规律法,或者拆成两项乘积用莱布尼茨求导法则,如果问我们的是f(a),也就是函数在某一...
专题讲座05:一元函数的导数与微分问题求解注意事项及典型题分析
对于这类问题一般首先考虑求解、验证方法就是函数连续、函数导数的定义。主要分为两步:一步通过取自变量为一些特殊的值,依据等式求出一些特殊点的函数值;第二步,写出需要验证或计算的极限式,再依据已知写出与连续.导数定义相关的极限式,然后依据等式改写极限式,通过求得的特殊值,或者根据改写再来计算一些特殊的函...
关于印发《湖南省2024年普通高等学校专升本公共科目考试要求》的...
1.理解函数的概念,会求函数的定义域、表达式及函数值,会根据实际问题建立变量间的函数关系;掌握函数的有界性、单调性、周期性和奇偶性;了解反函数、分段函数、复合函数的概念;掌握函数的四则运算与复合运算;了解初等函数的概念,掌握基本初等函数的性质及其图象。
2016考研数学分段函数求导的两种解题方法
下面老师对分段函数求导的两种重要方法进行细致讲解,以帮助广大考生复习备考(www.e993.com)2024年11月11日。从上面的例题中,可以看出,方法二在处理分段函数求导问题上,明显更简便一些。具体的方法选用,要具体的分析对应的题目。同学们可以做一些这一类的题目,进行巩固练习,加深对两种方法的掌握。
不定积分的求法-不定积分常用方法小结
(一)第一类换元法设f(u)f(u)有原函数,u=φ(x)u=\varphi(x)可导,则有∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x)\int_{}^{}f[\varphi(x)]\varphi^{}(x)dx=[\int_{}^{}f(u)du]_{u=\varphi(x)},第一类换元法主要技巧在于凑微分,不仅要熟悉常见函数的导数,还要很强的观...
第10讲:《偏导数及其基本计算方法》内容小结、课件与典型例题与练习
注1对于分段函数的导函数或高阶导数在分界点的连续性和可导性的讨论,以及导数值的计算,一般都要先计算得到该函数的导函数以后,然后再使用定义的方法对分界点的连续性和可导性进行判定,或完成相关的计算。对于初等多元函数导函数的计算,在定义区域内应用求导法则直接求导函数,对于间断点处使用定义法求导数值和判定...
2023考研数学复习指导:微分学应对方法
(1)直接考察导数定义或可微定义;(2)导数计算:参数方程求导或隐函数求导或变限积分求导;(3)求函数的单调区间、凹凸区间、极值和拐点;(4)求切线与法线方程;(5)求渐近线;(6)用中值定理进行相关证明;(7)不等式证明;(8)根据已知函数图像画出导函数图像。其中(1)(2)(3)(4)(5)(8)常见于小题,(...
博研堂个性化辅导:考研数学满分神话源于基础和技巧
对于微积分这一部分,导数的定义是考生必须掌握的,即抽象函数的可导性,积分部分的重点是定积分、分段函数的积分、带绝对值函数的积分等各种积分的求法。在多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数也是考试涉及的内容。所以,考生一定要围绕考纲考点进行针对性的基础复习。