y=(2x+2)的平方与(2x+1)立方的乘积之函数主要性质
Lim(x→0)(2x+2)^2(2x+1)^3=4,Lim(x→+∞)(2x+2)^2(2x+1)^3=+∞,可见函数的值域为:(-∞,+∞)。
Inx加根号下1加x平方的导数
Inx加根号下1加x平方的导数令t=x??+1对√t求导为1/(2√t)再乘以x??+1的导数2x所以最后答案是x/(√x??+1)。1、根号,数学符号,用来表示对一个数或一个代数式进行开方运算的符号,用“√”表示,被开方的数或代数式写在符号包围的区域中,不能出界。若a=b,那么a是b开n次方的n次方根...
算法中的微积分:5大函数求导公式让你在面试中脱颖而出
假设上述函数f(x,y)=[2x,x√y]从映射到,通过推导该函数的导数可以发现函数的输入和输出域都是多元的。在这种情况下,由于平方根函数在负数上没有定义,需要把y的定义域限定为。输出雅可比矩阵的第一行就是函数1的导数,即2x;第二行为函数2的导数,即x√y。雅可比矩阵在深度学习中的可解释性领域中...
不定积分的求法-不定积分常用方法小结
易知(sinx)6+(cosx)6=14[1+3(cos2x)2](1)(sinx)^{6}+(cosx)^{6}=\frac{1}{4}[1+3(cos2x)^{2}](1)I=2∫d(2x)1+3(cos2x)2=2∫(sec2x)2(sec2x)2+3d(2x)I=2\int_{}^{}\frac{d(2x)}{1+3(cos2x)^{2}}=2\int_{}^{}\frac{(sec2x)^{2}}{(sec2x)^{2}+3}d(...
牛顿迭代法传奇(上):张冠李戴的命名
以三次方程x3–2x–5=0为例。他首先注意到在2与3之间有个解(读者可以用介值定理验证),于是他把这个解写成x=2+p,代入原方程化简后得到p的三次方程p3+6P2+10p–1=0。当然,解这个新方程看起来跟老方程一样困难。但p的方程可以用上微积分的思路求解:因为p很小,它的平方和...
直播回顾:学而思名师解析2020年高考数学真题
问延炜:那破解的关键就是一个项达到分离变量的目的,你把Xx和Yyy分开,然后你要看到2x-3-x的X次方减去3的负X次方,这是左边(www.e993.com)2024年11月12日。然后右边2y-3-y2的Y次方减去3的负Y次方,左右两边的结构是不是完全一样?然后咱们是不是应该想到函数,这个时候果断构造函数f(t),这个函数利用它的单调性不就顺利解决了嘛。所以看上去...
高考数学:48条秒杀型公式与方法,看过都说好
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。8.常用数列bn=n×(2n)求和Sn=(n-1)×(2(n+1))+2记忆方法:前面减去一个1,后面...
积分最基础最重要的定理, 线性法则, 学完就会求大多数不定积分
(3)∫dx/((cosx)^2(sinx)^2)=∫(1/(cosx)^2+1/(sinx)^2)dx三角函数相关的不定积分,关键是三角函数的公式要娴熟=∫(secx)^2dx+∫(cscx)^2dx=tanx-cotx+C.(4)∫cos3x·sinxdx=1/2*∫(sin4x-sin2x)dx利用了正弦差公式...