为什么雨滴落下不会砸死人?《张朝阳的物理课》推导斯托克斯定律
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
张朝阳求纳维尔斯托克斯方程的特解
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
轻松、有趣的掌握梯度下降!
想象自己站在函数f以一定间隔排列的点(x0,y0…)之中。向量??f(x0,y0…)将识别出使f函数值增加的最快行进方向。有趣的是,梯度矢量??f(x0,yo…)也垂直于函数f的轮廓线!假设偏导数是具有n个偏导数的n次导数,这些偏导数可以将每个单独的变量与其他看作常数的变量隔离开来。而梯度将每个偏...
a的x次方求导
a的x次方导数是(a^x)'=(lna)(a^x)。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。1a的x次方求导(a^x)'=(lna)(a^x)求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y'/y=lna所以y'=ylna=a^xlna,得证对于可导的函数f(x),...
Inx加根号下1加x平方的导数
Inx加根号下1加x平方的导数令t=x??+1对√t求导为1/(2√t)再乘以x??+1的导数2x所以最后答案是x/(√x??+1)。1、根号,数学符号,用来表示对一个数或一个代数式进行开方运算的符号,用“√”表示,被开方的数或代数式写在符号包围的区域中,不能出界。若a=b,那么a是b开n次方的n次方根...
一个令人惊叹的数学恒等式,一个天才的发现,一个意想不到的结果
所以我们看到y在0处等于0(www.e993.com)2024年11月14日。把x=0带入通解中,所以c等于1,那么最后,插入x=1,就完成了,现在让我们试着以完全相同的方式理解拉马努金的无限和,将这个和扩展成一个幂级数,只用x的奇数次幂,计算导数,提出一个x,像之前一样,我们将原幂级数命名为y(x),它的导数是y'。所以,...
不定积分的求法-不定积分常用方法小结
设f(u)f(u)有原函数,u=φ(x)u=\varphi(x)可导,则有∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x)\int_{}^{}f[\varphi(x)]\varphi^{}(x)dx=[\int_{}^{}f(u)du]_{u=\varphi(x)},第一类换元法主要技巧在于凑微分,不仅要熟悉常见函数的导数,还要很强的观察能力。
优化背后的数学基础
偏导数的值是特殊切线的斜率。最陡的方向根据梯度确定,定义为:注意,梯度是参数空间中的方向。可以轻松在二维平面中绘制出梯度,如下图所示:f(x,y)的梯度。综上所述,发现峰值的算法现在成为:这就是所谓的梯度上升(gradientascent)。如果要求函数最小值,就要沿负梯度的方向迈出一步,也就是下降最陡的方向:...
GRE数学sub的准备
*5.3Proposition:Letf:X->Y;letXandYbemetrizablewithmetricsdXanddY,respectively.Thencontinuityoffisequivalenttotherequirementthatgivenx∈Xandgivenε>0,thereexistsδ>0suchthatdX(x,y)<δimpliesdY(f(x),f(y))<ε....
成人高考常用数学公式有哪些?
前n项和公式:Sn=a1(1-q的n次方)/1-q或Sn=a1-an(n为底)q/1-q(q不等于0)前n项和公式很重要记下来数列的题听说有十分求导:求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0);②求平均变化率;