从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3等。因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。代数数vs.超越数:谁更高深?接下来,会遇到了两个稍微抽象的概念:代数数和超越数。代数数是那些能够成为某个整数系数多项式...
为什么发现个无理数,就引发了数学危机
而希帕索斯(Hippasus)正是在研究毕达哥拉斯定理时发现:正方形对角线与边长之比等于根号2,这是一个无理数,无法表示成两个整数之比,它的发现更是直接引发了第一次数学危机。发现了一个无限不循环小数,承认它的存在不就行了,为什么就引发数学危机了呢?原来,毕达哥拉斯学派对“数”持有一种信仰,而这种信仰的基...
有理数和无理数到底哪个多?
这是自然数、整数、有理数和实数的关系。但你可能被这张图误导了。事实上,它们的对比关系是这样的,因为无理数比有理数多得多。有理数是整数与分数的统称,当然包括有限小数及循环小数,因为他们都能化为分数的形式。而无理数则是无限不循环小数,比如圆周率π和自然对数的底e。得出这个结论的是一位驰骋在...
3.14圆周率日:你知道无理数和有理数的区别吗?
有理数与无理数的区分是数学中的基本概念,反映了数的不同属性。有理数是可以表示为两个整数之比(分数形式)a/b的数,其中a是整数,b是非零整数。有理数既可以是正数、负数,也可以是零。这类数的特点在于它们的小数表示要么是终止的,要么是无限循环下去的。例如:1/2=0.5,这是一个简单的小数。
0.999999...8是一个什么数?有理数还是无理数?
你问0.9999…8是有理数还是无理数,相当于默认了它是实数。但它压根不是实数。0.9999…8只不过是你根据“实数写成十进制小数后具有的一些直观特征”杂糅出的符号。是你对实数定义尚不明确的情况下将错就错的产物。或许这个问题的源头,在于高中对实数的定义有漏洞。这个漏洞就是:...
这种无理数中的无理数,让数学家直呼“根本停不下来”
事实上,解决化圆为方这个难题的关键,正是犹如之前数学家将实数分为有理数和无理数一样——需要将复数也分为两个集合(www.e993.com)2024年11月17日。对于复数来说,其中许多都等于整系数多项式的根,数学家就把这个称作代数数。每个有理数都是代数数,一些无理数也是,例如??3;√2,还有即使是虚数i,它也算,因为它是x2+1的根。
实数的具体分类?
实数的具体分类?方法一:分为有理数和无理数。有理数又分为整数和分数,无理数又分为正无理数和负无理数。整数分为正整数、0和负整数,分数分为正分数和负分数。方法二:分为正实数、0和负实数。正实数又分为正有理数和正无理数,负实数又分为负有理数和负无理数。
无理数被发现的过程曲折,他的研究推动了数学发展,自己却被处死
无理数是无限不循环小数,与之相对的是有理数,有理数是由所有分数,整数组成,它们都可以化成有限小数,或无限循环小数。传说,无理数最早由毕达哥拉斯学派弟子希伯斯发现。他发现了一个事实:若正方形的边长为1,则正方形对角线的长不是一个有理数。这与毕达哥拉斯学派的“万物皆数”(指有理数)的哲理大...
无理数引发的第一次的数学危机,两千年后才平息!
人们都说,数学是所有自然学科的基础,而关于数却一直在发展,从无到零的出现,从整数到负数,从有理数到无理数,从实数到虚数,从复数到汉密尔顿的四元数。新事物的诞生都伴随着巨大的阻力,有的可能会有付出生命的代价,数的发展也同样如此。但不可否认的是,每一次对数域的扩充,都让人们更加接近数学的本质,了解数学...
初中数学知识点总结: 有理数的相关概念
作用:①直观地比较实数的大小;②明确体现绝对值意义;③所有的有理数可以在数轴上表示出来,所有的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。5.绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反...