为什么雨滴落下不会砸死人?《张朝阳的物理课》推导斯托克斯定律
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
张朝阳求纳维尔斯托克斯方程的特解
首先来计算第一次nabla算符作用后的结果,它将被作用的矢量沿不同方向求导,但对求导方向的基矢和被作用后的矢量的基矢这两个基矢而言做了张量积,张量积既不是点乘也不是叉乘,而是把两个基矢直接放在一起作为二阶张量的基底,以三维空间来看,它包含了3×3=9个系数和基底。用??代表矢量的张量积,可以写成(12)式的...
不定积分的求法-不定积分常用方法小结
易知(sinx)6+(cosx)6=14[1+3(cos2x)2](1)(sinx)^{6}+(cosx)^{6}=\frac{1}{4}[1+3(cos2x)^{2}](1)I=2∫d(2x)1+3(cos2x)2=2∫(sec2x)2(sec2x)2+3d(2x)I=2\int_{}^{}\frac{d(2x)}{1+3(cos2x)^{2}}=2\int_{}^{}\frac{(sec2x)^{2}}{(sec2x)^{2}+3}d(...
量子力学之路(2)——从微分方程中看天体运动,数学是宇宙的诗歌
步骤4和步骤5:设力的两个定义相等,并比较基向量现在可以找出具有相同基向量的项,这可以帮助我们将它们与柱坐标下牛顿引力进行比较这个结果给出了两个运动方程。第三个运动方程是z(t)=0。角运动方程根据一阶微分方程的知识,我猜这个方程是两个函数乘积的时间导数。我们从标准乘积法则开始在这种情况下,可...
希尔伯特第八问题有望终结:黎曼猜想获证!
作为黎曼泽塔方程s的解集(Res=cos2π/6=1/2,Ims=bi),Ims=bi中的b必须同所有偶数关联,至少是同某种特殊偶数的谐波有关联,如3+p所得到的特殊偶数的谐波,不同的偶数集决定了解析延拓后的负数项数列特征,虚数i的偶数次方产生了负数项级数。把笛卡尔坐标的实部Res=a(实数)当成极坐标的极角...
弧形连铸机连续矫直设计分析
其曲线的导数就是上述的大圆在切点的斜率,设坐标圆心在连铸机基本半径的圆心上,那么切点的横坐标就是x=-9000*sin3.542=-556.02171,圆的方程为:我们再来将坐标原点落在五辊拉矫机中间辊面与垂直中心线的交点上,按照共识,一般使用三次抛物线方程来确定这个矫直曲线,三次方抛物线的方程就是:...
高考数学:48条秒杀型公式与方法,看过都说好
A为线线夹角;A为线面夹角(但是公式中cos换成sin);A为面面夹角注:以上角范围均为[0,派/2]。19.爆强公式1+2+3+…+n=1/6(n)(n+1)(2n+1);13+23+33+…+n3=1/4(n)(n+1)20.爆强切线方程记忆方法:写成对称形式,换一个x,换一个y。