陶哲轩推荐:2高中生发现勾股定理新证明,论文已发美国数学月刊
勾股定理想必大家都已经非常熟悉了,包括那句耳熟能详的“勾三股四弦五”,以及它的基本公式a2+b2=c2。虽然这个定理已经有2500多年的历史,但毫不夸张地说,它的重要性依然贯穿于现代数学之中。当时她们二人提出新证明时,可以说是在圈内引起了不小的轰动。因为长期以来,数学家们基本上都采用代数和几何的方法来...
余弦定理、正弦定理、海伦公式
余弦定理、正弦定理、海伦公式01这三个可以说都是勾股定理引申出的定理,从小小的三角形出发,发挥了巨大的作用。我们先来画一个三角形,它分别有三个边,abc,如图所示。它同时也有三个角,1.2.3。现在咱们做个垂线,让AD垂直BC,垂点是D。好,△ABC被分成了两个直角三角形。于是,我们就可以有以下定理。
陶哲轩推荐:两名高中生发现勾股定理新证明,论文已发《美国数学...
同样,使用cos(α??β)的公式(让α=β在恒等式cos(α??β)=cosαcosβ+sinα*sinβ中)来证明勾股定理也是圆的而不是三角学的,使用sin(α+β)的公式也是如此,其中α和β是互补角。声称一个证明是三角学的也可以基于其他理由被否认。例如,勾股定理最著名的证明之一...
葛惟昆|“从爱因斯坦质能关系式推出勾股定理”之荒谬
细心的读者可能会发现,这里真出现了类似相对论质能关系式的公式:Ec=mc2,于是“教科书”大加发挥,说成是爱因斯坦用相对论的质能关系式证明了勾股定理。这些编辑绝对是没经过大脑,也不想想在上面的勾股定理证明中,m只是个无量纲的常数而不是质量,c是个长度而不是光速,E也不是能量而是面积。两者之间的关系,...
勾股定理是怎么诞生的?
根据赵爽弦图,可得出公式:4×(ab/2)+(b-a)??=c??,化简后即是:a??+b??=c??。赵爽的“勾股圆方说”与“弦图”,是在商高理论基础上,对勾股定理的一个重要证明,是中国古代代数和几何紧密结合、以形证数的一个典范。四、勾股定理溯源...
勾股定理的证明方法及常用公式
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方(www.e993.com)2024年11月8日。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。1勾股定理推导:欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为...
美国高中女生因数学竞赛,发现勾股定理新证明!论文已发《美国数学...
平面上的直角三角形的两条直角边的长度(较短直角边为勾长、较长直角边为股长)的平方和等于斜边长(弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理可考的严谨数学证明,起源于欧几里得《几何原本》中卷一的命题47。
“勾股定理”16讲?第三讲-以直角三角形三边为边长的图形面积
打开网易新闻查看精彩图片打开网易新闻查看精彩图片打开网易新闻查看精彩图片打开网易新闻查看精彩图片打开网易新闻查看精彩图片主要分为这三种题型,主要为解答题分值较大,涉及的知识点较多,并衍生到三角形的相关知识点以及勾股定理与图形的知识等题型,同学们可练习!
人教社教材称爱因斯坦用相对论证勾股定理|和乐数学
传说爱因斯坦是在幼年时独自(重新)发现过一个勾股定理的证明。但他不可能用后来发现的相对论去证明勾股定理。而且两者之间没有关系。我们看看书中是如何用质能公式煞有介事地证明的吧。“证明”思路如下。过直角顶点向斜边作垂线段,将边长分别为
少明老师:初中数学《勾股定理13大考点分析》短期复习必备!
1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2。公式的变形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2+b2=c2,那么三角形ABC是直角三角形。这个...