银行信贷风控专题:Python、R 语言机器学习数据挖掘应用实例合集...
基于决策树的分类模型有如下几个特点:(1)决策树方法结构简单,,便于理解;(2)决策树模型效率高,对训练集数据量较大的情况较为适合;(3)树方法通常不需要接受训练集数据外的知识;(4)决策树方法具有较高的分类精确度。预警方案设计数据在进行操作的过程中,我们一共分了四步,分别是数据分析和分离数据集,建立训练...
AI 科普丨通透!机器学习各大模型原理的深度剖析!
决策树模型的基本原理是递归地将数据集划分成若干个子数据集,直到每个子数据集都属于同一类别或者满足某个停止条件。在划分过程中,决策树模型采用信息增益、信息增益率、基尼指数等指标来评估划分的好坏,以选择最佳的划分属性。决策树模型的代表模型有很多,其中最著名的有ID3、C4.5、CART等。ID3算法是决策树算法的鼻...
一篇文章系统看懂大模型
常见的监督学习算法包括线性回归、逻辑回归、支持向量机、K近邻、决策树和随机森林等。无监督学习:无监督学习是机器学习的一种方法,在没有标签数据的情况下从数据中发现模式和结构,它主要用于数据聚类和降维等任务。常见的无监督学习算法包括K均值聚类、层次聚类、DBSCAN、主成分分析(PCA)和t-SNE等。半监督学习:半...
中国科技期刊卓越行动计划推介:《自动化学报》2024年50卷8期
基于仿真机理和改进回归决策树的二噁英排放建模夏恒,汤健,余文,乔俊飞城市固废焚烧(Municipalsolidwasteincineration,MSWI)过程是“世纪之毒”二噁英(Dioxin,DXN)的重要排放源之一.截止目前为止,DXN的演化机理和实时检测仍是尚未解决的难题.现有研究主要基于离线化验数据构建数据驱动模型,DXN的检测未有效...
Nature:真正的超级Nature出现!时隔多年的逆袭之路!
1.决策树的实现和应用2.随机森林的实现和应用3.朴素贝叶斯的实现和应用4.支持向量机的实现和应用项目实操1.使用实验数据训练机器学习模型预测金属有机框架材料中的气体吸附2.通过机器学习方法筛选新型四元半导体化合物这两个实操项目同时穿插讲解如下内容...
大数据和机器学习在验证上市公司财务报表真实性的应用研究
在得到训练好的逻辑回归模型并通过评分卡模型进行细项评分之后,将一条数据的各项评分进行计算汇总,得到最终分数(www.e993.com)2024年11月9日。并将最终分数再次通过决策树分箱进行有监督分箱,其分箱结果的IV值为1.9235,这也代表着该分箱有着良好、明显的区分度,意味着评分卡模型的区分效果。
【专题研究】KD-Ensemble:基于知识蒸馏的alpha因子挖掘模型
《自适应图神经网络周频alpha模型》和《融合基本面信息图神经网络因子挖掘模型》中,我们利用循环神经网络(RNN)、残差网络(ResNets)、自适应图神经网络(ASTGNN)和决策树模型搭建了端到端AI量价模型框架,这套框架的输入是个股最原始的K线数据、个股的基本面特征以及一些人工合成的日频level2因子等,而最终的输出则...
Nature:重磅进展!打破领域瓶颈,解决电池百年难题!
1.决策树的实现和应用2.随机森林的实现和应用3.朴素贝叶斯的实现和应用4.支持向量机的实现和应用项目实操1.使用实验数据训练机器学习模型预测金属有机框架材料中的气体吸附2.通过机器学习方法筛选新型四元半导体化合物这两个实操项目同时穿插讲解如下内容...
人工智能最擅长什么:稳定世界原则
瑞银集团本来满足树中的其他两个特征,但快速节俭决策树的逻辑是,每个问题都按照其重要性独立存在,并且不能用其他线索的正值来补偿负值。这类似于人体内各系统的功能:完美的肾脏无法弥补衰竭的心脏。心理人工智能,例如快速节俭决策树,可以增强和完善人类决策。在每个案例中,专家的知识都可以转化为算法。与许多更复杂...
关于当前涉人工智能几个法律问题的思考
逻辑决策树的决策过程是确定的,因此从理论上讲,每一步决策都可以追溯到人工智能研发设计者事先所作的决策。目前,符号型人工智能的典型代表包括专家系统、知识图谱、知识工程以及数据库等,具体的应用领域包括互联网广告行业的计算广告、搜索平台的点击率预估、金融行业的风险控制等。