基于机器学习方法的两阶段因子择时【华福金工·李杨团队】
决策树(DecisionTree),是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。决策树流程中的...
银行信贷风控专题:Python、R 语言机器学习数据挖掘应用实例合集...
决策树决策树(DecisionTree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论。因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组...
机器学习在复合材料领域到底能怎么用?【建议收藏】
1.理论筑基:由国家重点高校老师由浅入深得讲授各个模块要点难点、用到的方法,为实现后续的仿真分析加强理论依据。2.实践为本:由组内最擅长软件操作的讲师详细讲授各个模块模拟实现各种算例的过程、模拟结果的分析,为实际课题与论文增添仿真色彩。讲师介绍机器学习与聚合物复合材料讲师由来自全国知名高校副教授,省...
机器学习之决策树算法
决策树(DecisionTree),是一种树状结构,上面的节点代表算法的某一特征,节点上可能存在很多的分支,每一个分支代表的是这个特征的不同种类(规则),最后叶子节点代表最终的决策结果。决策树的构造只会影响到算法的复杂度和计算的时间,不会影响决策的结果。为了更直观地理解决策树,我们现在来构建一个简单的邮件分类系...
重磅| 李为民/王成弟团队发文:创建了适宜国人的肺结节恶性风险...
C-Lung-RADS第一阶段Phase1使用肺结节的密度类型、大小以及部分实性结节的实性成分比例作为决策树模型的输入,通过对每个分裂节点进行分析,提取出相应的直径阈值作为候选指标。随后,将这些基于不同密度类型所获得的阈值进行整合,并通过网格搜索技术,在群体水平上确定不同密度类型结节四种恶性风险分级的最优的阈值组合,以...
华西医院团队创建适合中国人群的肺结节风险分级及精准管理策略
C-Lung-RADS第一阶段Phase1使用肺结节的密度类型、大小以及部分实性结节的实性成分比例作为决策树模型的输入,通过对每个分裂节点进行分析,提取出相应的大小阈值作为候选指标(www.e993.com)2024年11月10日。随后,将这些基于不同密度类型所获得的阈值进行整合,并通过网格搜索技术,在群体水平上确定不同密度类型结节四种恶性风险分级的最优的阈值组合,以...
华西医院团队在医学顶刊《Nature Medicine》发文!这一研究创新在...
C-Lung-RADS第一阶段Phase1使用肺结节的密度类型、大小以及部分实性结节的实性成分比例作为决策树模型的输入,通过对每个分裂节点进行分析,提取出相应的直径阈值作为候选指标。随后,将这些基于不同密度类型所获得的阈值进行整合,并通过网格搜索技术,在群体水平上确定不同密度类型结节四种恶性风险分级的最优的阈值组合,...
四川大学华西医院李为民/王成弟团队在Nature Medicine上发文,创建...
相较于Lung-RADS中的大小界值,C-Lung-RADS的结节大小阈值更加适合中国人群(受试者工作特征曲线下面积AUC分别为0.761,0.899),为大规模肺癌筛查中肺结节的风险分类提供科学依据。图3Phase1基于决策树模型确定结节风险分层的大小阈值为了进一步区别高危结节、极高危结节,Phase2/2+阶段创新深度卷积神经网络(Deep...
机器学习十大算法:从原理到实践的探索
决策树是一种监督学习算法,它通过构建树状结构来预测分类或回归问题。决策树通过递归地将数据集划分为更小的子集来构建树状结构,每个内部节点表示一个特征的比较,每个分支表示一个可能的输出。决策树在金融、医疗和市场营销等领域有广泛应用。决策树的基本原理是通过构建一棵树来对数据进行分类或回归预测。树的每个...
全球海洋鱼类灭绝风险大幅上升!基于数据挖掘与模型的综合预测
每棵决策树都基于原始数据集的随机子集,并在特征的随机子集上进行训练,这种方法有效减少了过拟合的风险。最终,随机森林通过对所有决策树的预测结果进行投票(分类任务)或求平均(回归任务)来得出最终结果,广泛应用于生物信息学、金融预测、医学诊断等领域。在本研究中,随机森林(RF)模型被用于预测物种的世界自然保护联盟...