还不知道高数都有哪些证明题 ? 高质量数学竞赛等你参加!
主要使用介值定理进行证明,也可能存在综合零点定理和最值定理的情况。2.微分中值定理学习要求理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。对应定理费马引理、罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理证明方法构造法、微分方程法3.积分中值定理学习要求掌握不定...
知识点&计算思路&解题技巧,高等数学细节全梳理!|导数|定理|微分|...
中值定理证明题,不等式证明,我觉得这部分还是有迹可循的,大家多做题多总结方法,记住罗尔,费马,拉格朗日,最值,介值定理,而且出题一般不会在创造辅助函数上难为。以及一些常用的基本不等式,比如两个数相加的绝对值比各自绝对值相加小这种放缩创造不等式。03积分计算、几何应用、物理应用、积分等式不等式证明题不定...
2021考研数学高数知识点:闭区间连续函数的性质
(1)(最值定理)闭区间上的连续函数必取得最大值,最小值。(2)(介值定理)设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点,使得(3)(零点定理)闭区间上的连续函数如果两个端点函数值异号,则至少...
2024考研数学复习高数定理:多元函数微分法及其应用
性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能...
考研数学:高数复习易丢分的10个出错点
10.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。总的来说,高数其实不算太难,当你对它产生一种畏惧的时候,你就很难把它学好了。考试要的也是心态,有些题,本来就不属于自己的能力范围的,就直接放弃,否则一直缠着只会是浪费时间,其它题没时间做,这道题又没做出来。
2018年成人高考专升本高数一考试重点(一)
有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法(www.e993.com)2024年11月25日。(2)会求函数的间断点及确定其类型。
2016考研高数:重视函数极限与连续学习
关于函数连续,须知,按考研大纲中规定,考生要理解函数连续性的概念(含左连续和又连续),会判断函数间断点的类型,也要求要了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质:有界性、最大值和最小值定理、介值定理以及零点定理。这四个性质是第一章节所学的几个重要的性质,会用到以后的关于中值问题...
教你解决数学复习中最常遇到的10个问题
以中值定理相关的证明这类题型为例,如果总结到位了,就能达到如下效果:拿到一道此类型的题目,一般可以从条件出发进行思考,看要证的式子是含一个中值还是两个。若是一个,再看含不含导数,若含导数,优先考虑罗尔定理,否则考虑闭区间上连续函数的性质(主要是两个定理--介值定理和零点存在定理);若待证的式子含两...
为什么高数教材中不证明这个定理, 真的那么难证明吗!
闭区间上的连续函数具有:有界性定理、最值定理、介值定理和一致连续性定理。有界定理和最值定理的证明,老黄已经在前面的作品中分享了。这次老黄要分享的是介值性定理的证明。介值定理是《老黄学高数》系列视频第126讲分享的内容。当时老黄只分享了定理的内容,并没有进行证明。在学习实数的完备性六大基本定理之后...
2018考研高数之函数、极限、连续的考察点
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。