AI 科普丨通透!机器学习各大模型原理的深度剖析!
决策树模型的基本原理是递归地将数据集划分成若干个子数据集,直到每个子数据集都属于同一类别或者满足某个停止条件。在划分过程中,决策树模型采用信息增益、信息增益率、基尼指数等指标来评估划分的好坏,以选择最佳的划分属性。决策树模型的代表模型有很多,其中最著名的有ID3、C4.5、CART等。ID3算法是决策树算法的鼻...
治理之智 | 梅夏英《复杂系统与智能涌现:未来数字法研究的范式...
符号主义学派倡导通过符号和逻辑模拟人的心智,建立基于“规则”的机器学习,如决策树、随机森林和关联规则学习等。只是由于不能充分地将具体事物进行形式化,以及“NP完全问题”的存在,符号主义现已暂时沉寂,被基于数据统计的机器学习所取代,如支持向量机、浅层次神经网络和贝叶斯分类器等。行为主义则以维纳为主要代表,强...
深度解读:OpenAI o1技术原理分析及产业影响
尤其值得注意的是,这种推理能力不是单纯纵深式的推理,而是类似决策树的层层递进。遇到困难的时候,o1会做出假设,并对假设进行验证。如果假设被证伪,它会选择其他思路进行突破,最终得到正确答案。相比CoT(思维链)而言,它更像是ToT(思维树)的结构。(2)o1原理猜想:RL+MCTS,将CoT能力内化目前OpenAI官方对于o1的原理...
【量化专题】机器学习模型理论—决策树的剪枝
错误率降低剪枝法(REP)是一个比较简单的决策树剪枝方法,但是,由于使用独立测试集,与原始决策树相比,修改后的决策树可能偏向于过度修剪,这是因为一些在测试数据集中没有出现过的训练数据集所对应的分支很容易被修剪掉。4.2悲观错误剪枝法与REP方法相似,悲观错误剪枝法采用对比剪枝前后决策树模型的精度决定是否进行剪...
机器学习十大算法:从原理到实践的探索
决策树的基本原理是通过构建一棵树来对数据进行分类或回归预测。树的每个节点表示一个特征的比较条件,每个分支代表一个可能的输出结果。决策树的构建过程是从根节点开始,根据某个特征的比较结果将数据集分成两个子集,然后对每个子集递归地执行这一过程,直到达到终止条件(例如所有样本都属于同一类别或满足其他预定的...
千万IP创科普丨深入浅出:可视化理解揭示决策树与梯度提升背后的...
本文将通过视觉方式解释用于分类和回归问题的决策树的理论基础(www.e993.com)2024年11月24日。我们将看到这个模型是如何工作的,以及为什么它可能会导致过拟合。首先将介绍梯度提升以及它是如何改善单个决策树的性能的。然后将用Python从头实现梯度提升回归器和分类器。最后详细解释梯度提升背后的数学原理。
德扑AI之父:赢不赢柯洁 阿尔法狗都缺乏实际用处
谷歌曾在《自然》杂志上发表文章,公布阿尔法狗的几个基本原理,分别为:走棋网络(PolicyNetwork),给定当前局面,预测和采样下一步的走棋;快速走子(Fastrollout),在适当牺牲走棋质量的条件下提高速度;价值网络(ValueNetwork),给定当前局面,估计双方胜率;蒙特卡罗树搜索(MonteCarloTreeSearch,MCTS),把以上三个部分...
《Nature》顶刊:高分子材料结合新研究出现最新进展,最高技术含量...
1.1决策树的原理2.2随机森林2.3Bosting方法3.朴素贝叶斯概率3.1原理解析3.2模型应用4.支持向量机4.1分类原理4.2核函数实操内容4.支持向量机的实现和应用项目实操这两个实操项目同时穿插讲解如下内容A1模型性能的评估方法A1.1交叉验证:评估估计器的性能...
基于XGBoost 特征选择方法在业务中的应用
XGBoost算法的基本原理如下:1)初始化一个弱学习器(通常是决策树),并计算该学习器的预测值和损失函数;2)算法计算损失函数对于当前预测值的梯度。梯度可以被理解为损失函数在当前预测值处的斜率,它给出了优化损失函数的方向;3)算法使用新的学习器去预测梯度,而非真实的标签。新的预测值等于原始预测值加上学习...
入门必读!写给初学者的人工智能简史!
感知机的工作原理“感知机”是联结主义的一项重要成果,在人工智能发展史上具有里程碑式的意义。但是,后来的一盆冰水,彻底浇灭了联结主义的热情。1969年,马文·明斯基和西蒙·派珀特(SeymourPapert)写了一本书《感知机:计算几何学导论》的书,对罗森布莱特的感知器提出了质疑。马文·明斯基认为:...