欧拉对“级数”的研究,发现了其他数学家几十年未能发现的结论
1669年,牛顿在他的《用无限多项方程的分析学》中,用级数反演法给出了sinx,cosx的幂级数,arcsinx,arctanx和e^x的级数展开。格雷戈里得到了tanx,secx等函数的级数,莱布尼茨也在1673年独立地得到了sinx,cosx和arctanx等函数的无穷级数展开式,以及圆面积和双曲线面积的具体展开式。在微积分的早期研究中,有些函数如...
2020考研数学高数考前梳理:无穷级数
2.了解函数展开为泰勒级数的充分必要条件,掌握Ex,sinX,cosX㏑(1+x)的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。3.理解博里叶级数的概念,和迪克雷收敛定理,会将定义在-1,1上的函数展开为博里叶级数,会将定义在0,1上的函数展开成正弦级数与余弦级数,会写出博里叶级数的和的表达式。
2019考研数学高数:知识归纳之无穷级数
2.了解函数展开为泰勒级数的充分必要条件,掌握Ex,sinX,cosX㏑(1+x)的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。3.理解博里叶级数的概念,和迪克雷收敛定理,会将定义在-1,1上的函数展开为博里叶级数,会将定义在0,1上的函数展开成正弦级数与余弦级数,会写出博里叶级数的和的表达式。
武汉纺织大学2024 年硕士研究生入学考试自命题大纲
10.掌握一些常见函数如ex,sinx,cosx,ln(1+x)和(1+x)α等函数的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.会利用函数的幂级数展开式进行近似计算.12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与...
武汉纺织大学2024 年硕士研究生入学考试自命题大纲
10.掌握一些常见函数如ex,sinx,cosx,ln(1+x)和(1+x)α等函数的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.会利用函数的幂级数展开式进行近似计算.12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与...
世界上第一个证明π是无理数的方法—高中生也能理解
麦克劳林公式是泰勒公式在x=0点的特殊形式(www.e993.com)2024年11月26日。若f(x)在x=0处n阶连续可导,则下式成立:其中表示n阶导数且(0<θ<1)。因为y=sinx在x=0处具有任意阶导数,用麦克劳林公式在x=0处展开sinx,得到:同样展开cosx得到:▌证明过程第一步,兰伯特得到了tanx的连分数表示:...
泰勒中值定理与泰勒公式计算思路与典型题分析
泰勒(BrookTaylor)英国数学家,主要以泰勒公式和泰勒级数出名。一、泰勒多项式与麦克劳林多项式设函数f(x)在x0某邻域内有定义,并且在x0处有n阶导数,则称为函数f(x)在x0处的n阶(次)泰勒多项式.其中系数称为f(x)在x0处的泰勒系数.特别,如果x0=0时,称...
2002年全国硕士研究生入学考试数学三考试大纲
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.掌提ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数.六、常微分方程与差分方程...
震惊!计算器里竟然藏着这样一个秘密!
Mathematica可以很方便的执行级数反演。Series[M-Sin[M],{M,0,10}]//InverseSeriesSeries[M-eSin[M],{M,0,10}]//InverseSeries早期解这个方程使用了关于离心率的麦克劳林展开。这不是个整函数,所以引入了所谓的拉普拉斯极限。