从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
从最简单、最熟悉的自然数开始,即我们平时用来数东西的数:0,1,2,3,4,5...。自然数的一个重要特点是,它们永远不会是负数:在自然数家族里,大家都是积极向上的小伙伴。自然数帮助我们理解最朴素的“计数”,是数学的起点。整数:有了“冷酷”的负数然而,生活并不会一直阳光明媚,我们会遇到零下摄氏...
为什么不能用 0 做除数?
1.自然数,整数,有理数的构造1.1.自然数集.由无限性公理,我们可以自然导出以下无穷集合:,我们可以给这个集合中的元素命个名:就这样,我们就有了自然数集.我们用表示.1.2.整数集,可以按照以下等价关系构成商集当且仅当.其中加法为一般意义上的加法.容易验证这是一个等价关系.它在...
有理数和无理数到底哪个多?
所以他得出一个结论:自然数、整数与有理数都一样多。因为它们都是可数的,也就是能按照一定的规则排列,且不会遗漏任何一个,这样就能和自然数一一对应。康托尔将它们的基数定义为:????0(阿列夫零)。从编号就能看出这是最基本的无穷。那么所有的无穷都是可数的吗?并不是!康托尔发现实数就不可数,甚至都...
为什么不能除以零呢?原来这么复杂!
这么做的原因就说来话长了,但它不是平常意义上的运算——比如你不能把0拿回来,不能写1=0*∞。另外,“无穷”二字在一些别的场合下是可以当成一个“东西”去对待的。比如当你衡量一个集合的大小的时候,它可以是无穷大的。但这就有很多种不同的无穷大了——自然数是无穷多的,有理数是无穷多的,实数也是...
数学必知必会:算术中的数
零(0):零是一个极其重要的概念,它在数学中代表着没有任何数量的状态。零的引入极大地改变了数学的面貌,使得数系得以扩展。自然数:自然数是我们日常生活中用于计数的数字,包括0和所有正整数(1,2,3,...)。自然数的集合通常表示为N。在进行数学讨论时,有时可能需要明确指出自然数集合是否包括0。例如,...
这本书是对陶哲轩数学天赋的高度展现!豆瓣高达9.8分
有一名学生曾经告诉我,他很难向那些没有学习过高等实分析课程的朋友解释清楚如下两个问题:(a)为什么当自己还在学习如何证明有理数只能为正、负或者零(习题4.2.4)时,那些学习非高等实分析课程的学生已经在学习如何区分级数的绝对收敛和条件收敛;(b)即便如此,为什么感觉自己的家庭作业要比那些同学的更难(www.e993.com)2024年11月18日。另外一位...
0.999999...8是一个什么数?有理数还是无理数?
同理:你问0.9999…8是有理数还是无理数,相当于默认了它是实数。但它压根不是实数。0.9999…8只不过是你根据“实数写成十进制小数后具有的一些直观特征”杂糅出的符号。是你对实数定义尚不明确的情况下将错就错的产物。或许这个问题的源头,在于高中对实数的定义有漏洞。这个漏洞就是:...
数学悖论系列之六(选择公理的悖论)|巴拿赫|集合论|豪斯多夫_网易...
另一个更丰富的例子是零和一之间的有理数。一旦我们分别给每个有理数分配了一个零测度,可数可加性就迫使我们给整个有理数区间分配一个零测度。对于不可测集,在连续统大小的系统中,只有其的一些子集才可以被一致地赋予可数可加测度。例如,上面定义的勒贝格测度可以通过有限和可数加法从原始定义的区间扩展到更多...
说说【数】:有些过于匪夷所思
而另外一些数就比较麻烦了。在数轴上,还有很多小数——它们不是自然数,而是实数。0和1之间,1和2之间,就有无穷多个小数。这些小数有的有理有的无理,有理的是有限的、循环的,无理的是无限的、不循环的。有理的:0.2,0.33333……它们可以被表示成分数。
席南华:基础数学的一些过去和现状
有意思的一件事情是自然数集合和有理数集合等势,但与实数集合不等势。1874年,康托尔提出有名的连续统假设:实数集合的任何无穷子集要么与实数集合等势,要么与自然数集合等势。1940年哥德尔证明了这个假设与现有的公理体系不矛盾。20世纪60年代,科恩建立了强有力的力迫法,证明了连续统假设之否与现有的公理体系不...