数学几何经典:用优美的几何原理演示所有三角函数的导数原理
第二:反正弦函数arcsinX的导数:经过如下作图,很容易得到红色三角形和蓝色三角形相似,也就得到了arcsinX的导数第三:正切函数tanX的导数:经过如下作图,得到ABC面积的两种等价形式,计算出y,这样就求出了tanX的导数第四:反正切函数arctanX的导数:我们同样运用面积法,得到h的值,接着运用无穷小原理就求出了arctanX...
高考数学知识点:导数公式
3.y=a^xy'=a^xlnay=e^xy'=e^x4.y=logaxy'=logae/xy=lnxy'=1/x5.y=sinxy'=cosx6.y=cosxy'=-sinx7.y=tanxy'=1/cos^2x8.y=cotxy'=-1/sin^2x9.y=arcsinxy'=1/√1-x^210.y=arccosxy'=-1/√1-x^211.y=arctanxy'=1/1+x^212.y=ar...
不定积分的求法-不定积分常用方法小结
4.∫sin(x2)dx4.\int_{}^{}sin(x^{2})dx5.∫cos(x2)dx5.\int_{}^{}cos(x^{2})dx6.∫exxdx6.\int_{}^{}\frac{e^{x}}{x}dx7.∫dxlnx7.\int_{}^{}\frac{dx}{lnx}8.∫lnxx+adx(a≠0)8.\int_{}^{}\frac{lnx}{x+a}dx(a\ne0)9.∫dx1+x49.\int_{}^{...
积分最基础最重要的定理, 线性法则, 学完就会求大多数不定积分
=∫x^2dx-∫dx+∫2/(x^2+1)dx=x^3/3-x+2arctanx+C.(3)∫dx/((cosx)^2(sinx)^2)=∫(1/(cosx)^2+1/(sinx)^2)dx三角函数相关的不定积分,关键是三角函数的公式要娴熟=∫(secx)^2dx+∫(cscx)^2dx=tanx-cotx+C.(4)∫cos3x·sinxdx=1/2*∫(sin4x-sin2x)dx利用了正...
第03讲:函数的概念与基本性质内容小结、课件与典型例题与练习
推论2:黎曼函数在区间上是黎曼可积的(黎曼函数在[0,1]上的积分为0)2、基本初等函数幂函数、指数函数(尤其是ex)、对数函数(尤其是lnx)、三角函数(sinx,cosx,tanx,cotx)、反三角函数(arcsinx,arccosx,arctanx,arccotx).对于这些函数的定义域、值域与图形要熟练掌握....
数学高三必修知识点极坐标方程
y=e^xy'=e^x4.y=logaxy'=logae/xy=lnxy'=1/x5.y=sinxy'=cosx6.y=cosxy'=-sinx7.y=tanxy'=1/cos^2x8.y=cotxy'=-1/sin^2x9.y=arcsinxy'=1/√1-x^210.y=arccosxy'=-1/√1-x^211.y=arctanxy'=1/1+x^2...
做加工,不懂三角函数,怪不得你的工资低!
正割函数secθ=r/x余割函数cscθ=r/y正矢函数versinθ=1-cosθ余矢函数coversθ=1-sinθ同角三角函数间的基本关系式平方关系:(sinx)^2+(cosx)^2=11+(tanx)^2=(secx)^21+(cotx)^2=(cscx)^2积的关系:sinα=tanα×cosα...
高考数学1-1知识点
当x∈[0,π],arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)四、三角函数与平面向量的综合问题...